SPE Library

The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 

Search SPE Library

Sort By:  Date Added   Publication Date   Title   Author

Conference Proceedings

Polymer-Clay Nanocomposites: Tailoring Structures with Processing Conditions
C.Y. Lew, W.R. Murphy, G.M. McNally, S. Yanai, K. Abe, May 2004

Nanocomposites based on nylon-12 and synthetic fluoromica were compounded using a single-screw extruder at different combination of shear and residence time and analysed with respect to their morphology, rheological, mechanical, and thermal properties. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) revealed unique structural arrays of the exfoliated layers which were found to be dependent on the extent of shear and residence time during processing. Rheological analysis showed that the melt viscosity of the nanocomposites was considerably lower compared to the unfilled polymer. Furthermore the melt viscosity and properties of each nanocomposite varied depending on orientation of the exfoliated layers. The results show that it may be possible to tailor the structures and properties of the nanocomposites using controlled extrusion conditions.

Extrusion Characteristics of HDPE-Wood Composites
Karen Xiao, Costas Tzoganakis, May 2004

Extrusion characteristics, such as output, pressure profiles and melting profiles, were investigated in a Brampton Engineering single screw extruder with two screw geometries. It was found that for the wood-HDPE1 composite, the channels were not fully filled until the melting process was completed in both screw geometries. The actual experimental results were compared to those simulated using a commercially available software program. It was found that the current extrusion theories do not predict the pressure profiles generated even for the virgin HDPE1 material for one of the screw geometries.

Some New Observations Relative to Melting in Single Screw Extruders
Gregory A. Campbell, Zirong Tang, Chicheng Wang, Matthew Bullwinkel, May 2004

The focus of this investigation was to evaluate literature and run experiments to help understand the mechanism of melting in single screw extruders. Literature data was re-analyzed using video capture and analysis programs to determine the rate of loss of material in the cross channel and solid bed thickness directions. The analysis demonstrates that the polymer solid bed goes to zero dimension in the thickness direction well before the solid bed width is consumed. This observation was confirmed in our laboratory using a specially built glass barrel extruder. These results suggest that the melting in single screw extruders is dominated by the loss of bed thickness and not bed width as predicted by current literature.

The Influence of Morphology on the Failure of Polyethylene Pipes in Hydrostatic Pressure Tests
Rajendra K. Krishnaswamy, Mark J. Lamborn, May 2004

Failure times of plastic and metal pipes subjected to hydrostatic pressure at various levels assist pipe manufacturers to not only design pipes for certain applications, but also to give them an indication of the useful service life-times of these pipes. In order to understand the influence exerted by semicrystalline morphology on the failure of polyethylene pipes under hydrostatic pressure, a medium-density polyethylene resin was converted into various pipes by altering the extrusion processing conditions. These pipes were subsequently subjected to hydrostatic pressure at a constant hoop stress and the failure times were recorded. The failure times were observed to depend strongly on the morphology of the pipes.

Computer Aided Troubleshooting of Extrusion Problems
Chris Rauwendaal, May 2004

When a problem occurs in an extrusion operation it is important to diagnose the problem, determine possible solutions, and implement the best solution in the shortest possible time. In-house personnel are often not well trained in efficient troubleshooting techniques and problem solving. Outside technical assistance may not be immediately available and may not lead to an expedient solution of the problem. As a result, it is important for extrusion companies to have tools available in-house that can help in the troubleshooting and problem solving process.A new tool available to the plastics industry is an expert system that allows computer aided troubleshooting of extrusion problems. This program allows the user to systematically analyze a large number of extrusion problems. In the end the program presents the user with a number of possible solutions to the problem. This paper will describe the capabilities of the program.

Production of Compounds with High Filler or Fiber Loading on Screw Kneaders
Klaus Kapfer, Wolfgang Schneider, May 2004

The production of filled and reinforced compounds has a high economic importance mainly because fillers and reinforcing fibers render the final product to serve very specific applications. In order to understand such operations more the term “highly filled” will be explained and critical aspects analyzed. In essence two different type of compounding machines are utilized for such compounding tasks, the co-rotating twin-screw and the reciprocating single screw (kneader). Fundamental differences of these systems are analyzed and compared. Examples of compounding processes are described.

Study of the Micropelletization Process
Claude Y.F. Xi, Elizabeth Takacs, Mark Tate, Michael R. Thompson, John Vlachopoulos, May 2004

A study has been performed to examine the rheological impact of micropelletization on several polyethylene grades with melt index values between 1-5 g/10 min. The experiments were done on a 50 mm 30:1 L/D extruder with an underwater micropelletizer attached. A 2-D finite element simulation was used to assist in the analysis by comparing the observed results to the predicted shear stresses in the die. The average micropellet size collected was 0.525 mm diameter. Minor sharkskin was observed on the surface of micropellets due to the high stresses experienced in the pelletizer die. However, the rheological properties of the micropellets did not change in comparison to the virgin resins.

Processing Nanocomposites on a Kneader Reciprocating Single Screw Compounding System
Paul G. Andersen, May 2004

Interest in nanocomposites is based on the premise that with a relatively small loading of properly dispersed treated clay, polymers can exhibit substantial improvement in properties. These include thermal properties such as HDT, mechanical properties such as flexural strength and modulus (without significant loss of impact), barrier properties, flame resistance, and abrasion resistance. While the concept behind nanocomposites is sound, implementation has been flawed. Dispersion of 8 micron clay particles into a million or so high aspect ratio platelets is a difficult task. Both chemical modification of the clay for improved compatibility, and development of specific compounding technology have shown promise but not been fully successful. In previous work (1) unit operations that have significant impact on clay dispersion in the co-rotation twin-screw extruder were identified. This presentation will review the design flexibility associated with the reciprocating single screw, or kneader, compounding system and discuss key unit operations necessary to obtain well dispersed clay. It will also compare results from the reciprocating single screw system with those obtained from previous work on a twin-screw extruder.

Wave Interfacial Instabilities at Coextrusion in Flat Dies: Simulation and Experimental Research
M. Zatloukal, M.T. Martyn, P.D. Coates, P. Sáha, May 2004

The work presents both, simulation and experimental findings of the research of two LDPE melts using a flat coextrusion flow visualization cell. The simulation is performed by FEM analysis with full u-v-p-? numerical scheme employing viscoelastic constitutive equations. The predicted stresses, velocities and interface location have been found to be in a good agreement with the measurements. The experimental analysis shows that pronounced wave instabilities are caused by the minor layer break at the merge point of the layers, and extensional viscosity is a driving parameter here. Finally, recently proposed ‘TNSD sign criterion‘ has been successfully tested for the prediction of the onset of wave interfacial instabilities in this type of the die geometry.

Experimental Observations and Analysis of LDPE Melt Flow in Coextrusion Geometries
M.T. Martyn, T. Gough, R. Spares, P.D. Coates, M. Zatloukal, May 2004

The study of two low density polyethylene melt flows in slit coextrusion flow cells with 30° and 90° confluent geometries is presented. The stream flows and polymerpolymer interface in the confluent region and die land are observed through side windows of the cell. Birefringence and image processing techniques are used to quantify stress and velocity fields in the upstream and down stream melt flows. Interfacial instabilities were observed in the LDPE melt flows in both geometries. Instabilities occurred at certain stream mass flow ratios. Digital image processing shows the wave type extrudate instabilities have the same periodicity as perturbation in the flow field in the die land. A recently proposed “TNSD sign criterion” reasonably predicted the onset of the interfacial instabilities in these die geometries.

A Non-Isothermal 3D FEM Study of Spiral Mandrel Dies with Non-Symmetrical Input
Petra Škabrahová, Ji?í Švábík, John Perdikoulias, May 2004

The design of an optimal spiral mandrel die suited to given requirements is quite a complicated task for the die designer. Even for a properly designed spiral section, there is always a question how variations in the flow prior to the spiral channels can influence the melt distribution at the exit of the spiral distribution section. This study uses 3D FEM analysis to investigate an effect of having uneven inputs. Specifically, the influence of uneven mass and temperature input distributions are studied. The influence of the die distributive system is investigated by analyzing the temperature and velocity fields at the exit.

Sensitivity of Flow Distribution and Flow Patterns in Profile Extrusion Dies
J.M. Nóbrega, O.S. Carneiro, P.J. Oliveira, F.T. Pinho, May 2004

Fluctuations of the operating conditions or slight variations of the polymer rheology may occur during longterm productions, affecting the performance of the die in an extent dependent on its flow distribution sensitivity. In this work, four extrusion dies are optimised (balanced) using different design methodologies. These are compared in terms of their performance and stability to some operating conditions and polymer rheological properties. A finite-volume based computational code is used to perform the required simulations of the non-isothermal three-dimensional flows, under conditions defined by a statistical Taguchi technique. Correlation between the flow patterns developed and flow distribution sensitivity is also investigated.

Simulation of Polymeric Flow in a Twin Screw Extruder: An Analysis of Elongational Viscosity Effects
A. Shah, M. Gupta, May 2004

Flow of a polymer in an intermeshing co-rotating twin-screw extruder is simulated. Effect of elongational viscosity on the flow is analyzed using independent power-law models for the shear and elongational viscosities. Axial component of the velocity is found to be maximum in the intermeshing region of the extruder. Axial component of velocity, which determines the throughput of the extruder, decreased as the elongational viscosity of the polymer used for the flow simulation was increased. The pressure in the extruder decreased from a very high positive value on the leading edge to a very large negative value on the trailing edge of the screw. For the same rotational speed the pressure build-up in the twin-screw extruder increased as the elongational viscosity of the polymer was increased.

Plastic Energy Dissipation (PED) of Uncompatibilized and Compatibilized Polymer Blend Systems
Bainian Qian, Costas G. Gogos, Byeong Joon Jeong, David B. Todd, May 2004

It has been demonstrated experimentally, that Plastic Energy Dissipation (PED) is the most important heating/melting mechanism, especially in the initial stage of heating of compacted solid polymer particulates in polymer compounding equipment, where forced particulate deformation takes place. Our previous work has also found that the melting of multi-component polymer blends is totally different from that of the individual blend component. The difference has been correlated to the different PED response of individual blend components in the deformation of polymer blends. In this work, we study the PED behavior of model polymer blends (PE/PS) at different compositions as well as the effect of a compatibilizer on the blend PED. The Specific Mechanical Energy (SME) input associated with PED of both uncompatibilized polymer blends and compatibilized polymer blends during uniaxial compressive deformation is calculated and compared.

Simulation of the Fluid Flow of Deeper Screw Flights for Co-Rotating Twin Screw Extruders
Olaf Wünsch, Ralf Kühn, Peter Heidemeyer, May 2004

Co-rotating twin-screw extruders are frequently used in the field of polymer compounding processes. The extruders are build in a modular design with different conveying and mixing elements to be adapted of specific processes. The user operating the machines often has an optimization problem: On the one hand a gentle mechanical treatment during the flow through the extruder are required. Otherwise there is the desire for a flow rate as much as possible. Therefore Coperion Werner & Pfleiderer has developed a new model series with deeper screw flights, because the ratio of outer versus root diameter is one of the characteristic dimensions of a screw extruder.To estimate and evaluate the success of the new model series, numerical simulations have been carried out of the three dimensional fluid flow in such twin-screw extruders. The approximation based on a finite volume method with contour-adapted meshes. The calculations are made in a relative system, where the flow appears in a steady state.In this paper we present results of numerical investigations of single- and double-flighted screw elements and compare these with calculated values of an old model range with smaller diameter ratio. We discuss not only the conveying- and power-characteristics for Newtonian and nonnewtonian highly viscous materials but also the distribution of shear rate and shear stress. It is shown that the deeper screw flights are a good choice to take care of the polymer material and reduce the energy consumption of many processes.

Development and Verification of a Method to Optimize Individual Screw Elements for Co-Rotating Twin Screw Extruders
H. Potente, A. Müller, K. Kretschmer, May 2004

Tightly Intermeshing, co-rotating twin screw extruders are commonly employed for tasks requiring good mixing. The modular constitution of both barrel and screw makes it possible to optimize the extruder configuration for a given task. This research focuses on the optimization of individual screw elements, thus the development of an optimized geometry for different materials and operating conditions.We calculated the pressure profile, the temperature development and the power consumption using one-dimensional models. A non-linear optimization algorithm was used to vary the geometrical data of the screw elements of interest. The goal was to find a geometry that shows an optimum between the contradicting goals of a minimum temperature increase, a minimum power consumption and a capability to build up a certain pressure with in a minimum distance (i.e. maximum pressure gradient). The quality of the geometry was characterized and evaluated by quality functions. We verified the optimization method by systematic experimental investigations.

Effects of Molecular Structure of Polyethylenes on Their Processabilities in Film Blowing Extrusion Process
Seungoh Kim, Pierre G. Lafleur, Pierre Sammut, Huneault A. Michel, May 2004

In this work, bubble instabilities of metallocene and Ziegler-Natta catalyzed polyethylenes (PEs) were studied by using an in-line scanning camera. Levels of long chain branching (LCB) and breadth of molecular weight distribution (MWD) of PEs were systematically varied to study their effects on bubble instabilities. Gel permeation chromatograph traces and small amplitude oscillatory shear data were used to verify the molecular structure of PEs. In addition, tensile stress growth coefficients and apparent uniaxial extensional viscosities were also determined by using Meissner type rheometer and converging die techniques. It was found that LDPE shows the most stable working windows confirming the previous arguments that the polymer showing strong strain hardening has the broader working window. It was also found that two branched metallocene catalyzed PEs show better bubble stability than PEs with broad MWDs implying that the presence of LCB plays a much more important role than the broadening of the MWD. The order of bubble instabilities can be properly evaluated based on a plot of normalized tensile stress growth coefficient vs Hencky strain or normalized extensional viscosities vs extensional stress.

Cluster Computing in Numerical Simulation of Extrusion Flow
Rong-Yeu Chang, Hung-Chang Hsu, Chao-Sheng Ke, Chih-Chung Hsu, May 2004

In this research, a parallel finite volume method was developed to simulate non-isothermal non-Newtonian steady flow in a coat-hanger extrusion die on PC clusters. We implemented the algorithm by domain decomposition methods that distribute the computational parts equally among the PCs and balance the loading of each PC to the utmost. Each PC exchanged data and information according to MPI (message passing interface) standard, and the governing equations were solved by using the three-dimensional collocated cell-centered finite volume method. In this approach, the extrusion flow can be predicted efficiently and accurately. Moreover, the effects of interconnect network were also discussed in this paper. The present numerical approach proved to be a promising solution for complicated extrusion problems.

Evaluation of Variability in Injection Molding (IM) Molds
Athirad Jantharawong, Mauricio Cabrera-Ríos, Blaine Lilly, José M. Castro, May 2004

The use of injection molding (IM) in high precision manufacturing relies upon the capability of the process to deliver parts consistently conforming to specifications. Characterizing such capability is a matter of understanding the most important sources of variation in IM and to find ways to provide robustness to the process. In this study, a statistical analysis of several sources of variability in IM is presented to precede a future optimization task in which the aim will be to find variable settings that provide the balance between high performance in selected measures as well as low variability around these indicators. The results presented here are meant to be an evaluation of IM molds for use in high precision manufacturing. A method that capitalizes on the strengths of statistical analysis is demonstrated here through two case studies where the variability in parts produced by different molds is assessed. The adequacy of these molds for high-precision manufacturing is determined.

Identifying the Best Compromises between Multiple Performance Measures in Injection Molding (IM) Using Data Envelopment Analysis (DEA): Preliminary Results
Carlos Castro, Narayan Bhagavatula, Mauricio Cabrera-Ríos, Blaine Lilly, José M. Castro, May 2004

Injection molding (IM) is considered to be the most important mass production process for plastic products. A substantial amount of research has been directed towards finding settings for the IM process variables as well as the optimal location of the injection gates. These objectives have been mostly approached through the optimization of performance measures (PMs) as functions of the process’ variables. The use of computer-aided engineering (CAE) has played a pivotal role in trying to achieve these objectives. The aim of this work is to demonstrate a method based on CAE, artificial neural networks (ANNs), and data envelopment analysis (DEA) to find the optimal compromises between multiple PMs to prescribe the settings of IM process variables and the location of the injection gate. Two case studies are presented for this purpose. The first case refers to the production of a cylindrical canister where part shrinkage plays an important role for an effective mold release. The second case analyzes the production of a generic part with cut-outs such as a window frame where the location of weld-lines is critical. Also in this second case flatness is considered an important measure.

  Welcome Page

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net