SPE Library

The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 

Search SPE Library

Sort By:  Date Added   Publication Date   Title   Author

Conference Proceedings

Aspects of Micromoulding Polymers for Medical Applications
M.T. Martyn, B. Whiteside, P.D. Coates, P.S. Allan, G. Greenway, P. Hornsby, May 2004

Micromoulding is maturing as a viable technology used in the manufacture of intricate, minute, 3d plastic components. There still remains a knowledge gap in understanding the effects of processing on product properties. Studies conducted within our laboratories reveal that polymer melts are exposed to extremely high shear and heat transfer rates in the process. These process conditions influence product morphology and properties.

Rapid Prototyping to Rapid Manufacturing
Anthony J. Sexton, May 2004

Since its inception, Rapid Prototyping (RP) has undergone many changes and enhancements in both materials and systems. One of these system enhancements is the Stereolithography (SLA) small beam laser, which was proposed to 3-D Systems Inc. in the summer of 1993.

Fabrication and Analysis of Plastic Hypodermic Needles
Hoyeon Kim, Jonathan S. Colton, May 2004

This paper presents the fabrication of plastic hypodermic needles using micro-injection molding and the analyses of their buckling behavior. As a needle cannula is a thin-walled column (here 0.7 mm outer diameter and 0.15 mm thick), it is vulnerable to buckling. The buckling behavior is characterized through numerical simulations and experiments.

Ultrasonic Microforging for Production of Microscale Parts with Nanoscale Features
Naveen Huilgol, Charles L. Thomas, May 2004

An ultrasonic horn is used to investigate a manufacturing technique to produce microscale polymeric parts using continuous wave ultrasound. This technique of microforging has a potential to produce microscale parts in production quantities. It should be capable of replicating nanoscale features on the microscale part. Potential advantages of microforging include speed of production and easy handling of the parts compared to microinjection molding techniques.

Radiation Processing of Polymers: The Current Status and Prospects for the Future
David R. Kerluke, Song Cheng, May 2004

Radiation processing has been used for almost 50 years to improve both bulk and surface properties of polymer resins and formed components. This session will examine several specific applications of commercial radiation processing in depth. This presentation will provide background for this session.

Novel Resins through the Pre-Irradiation Modification of Polyethylenes
T.A. du Plessis, H. Seute, May 2004

The presentation describes the development of a new family of novel polymers made through the ionizing radiation modification of polyethylenes prior to the conversion thereof into end products.

Electron-Beam Cross-Linking and Melting of UHMWPE for Hip and Knee Replacements
Orhun K. Muratoglu, May 2004

Wear and damage of polyethylene are the leading causes of in vivo failure of total hip and total knee arthroplasty. Increasing the resistance of polyethylene to wear and damage has been possible by radiation crosslinking and subsequent melting. Crosslinking improves the wear resistance of this polymer, while post-irradiation melting improves the long term oxidative stability, which is the primary precursor to polyethylene damage in vivo.

Continuous Process for Recycling of Polyurethane Foam
Sayata Ghose, A.I. Isayev, Ernst D. von Meerwall, May 2004

A continuous process for decrosslinking high resiliency polyurethane foam in an extruder with ultrasonic devices was developed. Rheological, structural and NMR relaxation and diffusion characterizations of decrosslinked foam were performed. The decrosslinked foam was blended with the virgin polyurethane rubber (PUR) and cured and the blend properties were investigated.

Study of the Processability of Post-Consumer and Post-Industrial Recycled High-Impact Polystyrene
Laura Luna, Yomilka Marcano, Maribel Marrero, Rosestela Perera, May 2004

In this work, the process of recycling high-impact polystyrene, both post-consumer and post-industrial, was studied. Blends of recycled/virgin materials were made and their MFI, mechanical properties and processability (thermoforming) were evaluated. Few differences in the behavior of the materials were found and their use as thermoformed packaging was ascertained.

An Investigation into Collection and Recycling of Blow Moulded Motor Oil Bottles in Australia
Syed Masood, Raja Raghavan, May 2004

This paper presents an investigation on the strategies to increase the post consumer HDPE recycling of extrusion blow molded oil containers in Australia and proposes a novel oil drain rack designed to drain out the residual oil effectively from the used oil containers, based on the requirements of the clients.

Combined Effects of Temperature and Sulfuric Acid Exposure on the Degradation of Nylon 6,6
Laura-lee Brown, V.T. Bui, H.W. Bonin, May 2004

Temperature effects combined with the chemical effects of sulfuric acid on Nylon 6,6 result in significant degradation of the mechanical performance of the material. Several techniques including weight gain studies and neutron activation analysis (NAA) have permitted the calculation of diffusion coefficients and activation energies of diffusion as well as the modelling of the degradation over extended periods of time.

Melting Aspects of Filled Compounds in a Modular Co-Rotating Twin Screw Extruder
Hochul Jung, James L. White, May 2004

Polymers containing fillers are an important in the polymer compounding industry. Melting mechanisms were studied in master batched polymer compounds using an intermeshing co-rotating twin screw extruder. Calcium carbonate or aluminum powder was master batched with linear low density polyethylene. The compounds filled with particles have higher thermal conductivities and viscosities than neat polyethylene. We determined rates and mechanisms of melting of polyethylene compounds by removal and characterization of carcasses in the melting region.

Effect of Barium Sulphate on Rheological Behaviour and Mechanical Properties of Metallocene Catalysed Polyethylenes used in Medical Devices
J. Godinho, I. Moore, G.M. McNally, W.R. Murphy, May 2004

The incorporation of radiopaque barium sulphate (BaSO4) in medical tubing products is a challenge to extrusion processers. The effect of BaSO4 concentration (0-25% by weight) on the rheology and mechanical properties of three different metallocene catalysed polyethylenes were studied. The results show significant change in melt viscosity, tensile properties and phase transition (Tan ? max) with increase in BaSO4 concentration.

Ultrasonic and NIR Determination of Filler Concentration in Polymer Melt Flows in Extrusion
S. Barnes, G.D. Smith, E.C. Brown, H.G.M Edwards, P.D. Coates, May 2004

The work detailed here describes techniques for improving the accuracy of previous ultrasonic methods used in determining filler concentration (up to 20 wt.%) in polymer melt flows. Results from preliminary investigation into the application of in-line transmission Fourier Transform Near Infra red (FT-NIR) for determination of filler concentration real-time during processing is also presented.

Properties and Processing of Thermal Conductive Thermoplastics
Simon Amesöder, Gottfried W. Ehrenstein, May 2004

The increase of at least 60 Vol.-% high thermal conductive filler in thermoplastics is an innovative approach for direct adjustment of a plastic part´s heat transfer. The filler content and high thermal conductivity affects directly the flow- and cooling-conditions during injection moulding. The paper presents basic influencing variables onto processing an part properties and shows new ideas for the construction and intelligent injection moulding processtechnology.

The Effect of PIB Molecular Weight on the Cling Characteristics of Polyethylene/PIB Films for Stretch and Cling Film Applications
C.M. Small, G.M. Mc Nally, W.R. Murphy, A.H. Clarke, May 2004

The effect of molecular weight on the migratory characteristics of polyisobutylene (PIB) additive from the bulk to the surface of a range of mono-layer and multi-layer extruded polyethylene films was analysed by FTIR-ATR and peel cling analysis. Migration rates were shown to be higher for low molecular weight additive and cling strength increased as the PIB molecular weight increased.

Hydrosilylation of Polypropylene through Reactive Extrusion
Mercy P. Bulsari, Costas Tzoganakis, Alex Penlidis, May 2004

Hydrosilylation of terminal double bonds in polypropylene (PP) was investigated in a twin-screw extruder. This process involved two steps: i) peroxide initiated degradation, which leads to the formation of terminal double bonds and ii) the addition of siloxane compound to such bonds. FTIR was used to follow the terminal double bond formation and siloxane incorporation. The shear viscosity at different temperatures and the contact angle of the hydrosilylated PP were evaluated. The reaction was found to decrease viscosity and to improve hydrophobicity.

Optimized Rheology and Density of Polyolefin Elastomers for Clarified Polypropylene Applications
Richard H. McGirk, Morgan M. Hughes, May 2004

Polyolefin elastomers based on metallocene technology are excellent impact modifiers for polypropylene. This study looks at how density and melt rheology of polyolefin elastomers affect clarity and impact performance of clarified polypropylenes with 2, 10, and 35 MFR. Optimum clarity and improved impact performance are achieved by matching rheology and density of polyolefin elastomers with polypropylene.

New Product Development: Benchmarking, Prototyping, & FEA Modeling
Josh Leonard, Justina Mikals, Pradipta Moulik, May 2004

Increasing demand for smaller products at lower costs has encouraged a rubber products company to develop a new product line made exclusively from plastic. Firestone Industrial Products Company approached new product development by benchmarking industry standards, prototyping duo-durometer polyurethane weld joints, and finite element analysis (FEA) modeling of a flex-member component.

Plastics Standards - A Great Benefit
Lawrence B. Ingram, May 2004

Suppliers, manufacturers, and consumers receive significant value from plastics standards. Standards are important in the marketplace because of their educational value, effects on research, product development and production. Improved electrical performance and evolving fire standards requirements necessitate changes to improve how wire and cable standards are developed. Technical people from materials suppliers, manufacturers, and users are needed to support these efforts. As plastic materials improve, the need to develop performance-based standards more rapidly is necessary.

  Welcome Page

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net