SPE Library

The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 

Search SPE Library

Sort By:  Date Added   Publication Date   Title   Author

Conference Proceedings

Dynamic Rheological Properties of Polypropylene Containing Thermoplastic Elastomer Compounds
W.G.F. Sengers, P. Sengupta, J.W.M. Noordermeer, A.D. Gotsis, May 2004

The dynamic rheological properties of two types of thermoplastic elastomer (TPE) compounds were studied at ambient and processing temperatures. The linear viscoelastic properties of Thermoplastic Vulcanisates (TPV) and PP/SEBS compounds can be described using models based on mechanical mixing rules. The results were evaluated as a function of composition.

The Comparasion of a Short-Term and Long-Term Capital Market Investment Tools
Zden?k Raska, May 2004

The article discuss the evaluation of ways of investment occasions on a capital market, taking under consideration the availability and cost of investment money. It is considering the time-factor related to the actual market environment an describing the specific possibilities of the trading tools as the technological conciliator of the investment in the chemical and plastic industry.

The Genealogy of Polymers
Barbara J. Gedeon, May 2004

The supply chain for polymeric materials is a drastically changing environment. This paper will focus on the types of trade names used. Changes of ownership along with historic trade names will be discussed. Predictions of future uses and types of trade names will be made.

On the Breakup of a Non-Newtonian Drop in an Extensional Flow
Moshe Favelukis, Olga M. Lavrenteva, Avinoam Nir, May 2004

The condition for the breakup, of a power-law non-Newtonian slender drop in a Newtonian liquid in an axisymmetric extensional flow, has been theoretically studied. The problem is governed by four dimensionless numbers: The capillary number, the Reynolds number, the viscosity ratio and the power-law index. The results suggest that the critical capillary number for drop breakup increases as the Reynolds number, the viscosity ratio and the power-law index decrease.

Molecular Dynamics Simulation of Nano-Scale Polymeric Rheological Properties and Extrusion Flows
Rong-Yeu Chang, Jenn-Jye Wang, May 2004

In this work the rheological properties of polymer have been studied by molecular dynamics simulation. Couette flow with various shear rates are used to investigate the degree of slip, shear viscosity and normal stress difference. The fluid consists of chains of n-hexadecane and is confined between two structured gold atomic walls. Isothermal simulations (350K) of 4 to 1 unsteady extrusion flow with various extrusion rates are conducted.

Optimization of a Flat Die Geometry
Y. Sun, M. Gupta, May 2004

Geometry of a flat die for polymer sheet extrusion is optimized to obtain a uniform velocity distribution across the exit of the die. While optimizing the exit velocity distribution, the constraint optimization algorithm used in this work enforced a limit on the maximum allowable pressure drop in the die. Effect of the shear as well as elongational viscosity of the polymer on the flow in the flat die is taken into account.

The Effect of Stabiliser Type and TiO2 Concentration on the Rheology of uPVC Profile Formulations
W.C. Yap, A.C. Ruddy, K. Halliwell, G.M. McNally, W.R. Murphy, May 2004

A range of unplasticised polyvinylchloride (uPVC) profile extrusion grade formulations, containing calcium/zinc, organotin and lead based stabiliser systems were blended with different concentrations of TiO2. Rheological analysis showed that the concentration of TiO2 (2phr - 8phr) had little effect on viscosity over the shear rate (200-1000s-1) and temperature range (170 – 190°C) studied. Mechanical analysis showed higher tensile and flexural modulii for the organotin stabilised formulations.

Medical Grade Copolyesters for Profile Extrusion
Daniel C. Cobb, Thomas J. Pecorini, Marc A. Strand, Eric J. Moskala, May 2004

Resins used in profile extrusion require high viscosity at low shear rates to improve melt strength and low viscosity at high shear rates to prevent melt fracture. This paper discusses the development of copolyester resins with the desirable rheological properties, as well as good optical and physical properties. The processing, biocompatibility, and sterilization of these resins will also be discussed.

Modeling Polymer Balloons for Angioplasty: From Fabrication to Deployment
Sébastien Delorme, Denis Laroche, Robert DiRaddo, Jean Buithieu, May 2004

Postulating that arterial injury resulting from the angioplasty intervention is a possible predictor of restenosis, a three-dimensional finite element model is proposed to predict stresses during balloon angioplasty. The model simulates balloon folding, insertion and deployment into a diseased artery. This work focuses on the balloon material model and properties, using experimental characterization and inverse modelling. A numerical example, including balloon folding and deployment inside a stenosed artery is also presented.

The Design of the Small Punch Test and its Application to Testing Medical Polymers
C. Daly, D. Leonard, F. Buchanan, J. Orr, N. Dunne, May 2004

The small punch test is a useful technique in the mechanical testing of polymers where limited material is available. This investigation focuses on the latest developments in the small punch test design, including integrated temperature control and environmental conditioning and its use in analysis of polymethyl methacrylate (PMMA) bone cement.

Plastic Medical Enclosures Made without Molds
Jim Fowler, Jack Hill, May 2004

It has never been easy, in the Medical Products Industry to design and build a custom plastic enclosure when the initial or lifetime quantities do not justify molds or tooling. In the last few years, a toolless technology has been commercialized to allow the manufacture of such enclosures, with minimal up front costs and broad design flexibility. This paper describes the technology, its application, strengths and limitations and provides an economic comparison to the other enclosure technologies used in the industry.

Influence of Barium Sulphate on Rheological Behaviour and Mechanical Properties of Medical-Grade PVCs
J. Godinho, I. Moore, A.C. Ruddy, G.M. McNally, W.R. Murphy, May 2004

Barium sulphate (BaSO4) is widely used as a radiopaque additive for medical grade PVC tubing in surgical procedures. The rheological characteristics and mechanical performance of two different medical grade PVCs containing BaSO4 (10-15 % w/w) having two different mean particle sizes (1 and 40 micron) was investigated. The results show significant change in melt viscosity, tensile properties and phase transitions (Tan ? max) with increase in BaSO4 concentration.

Polysulfone-Modified Epoxy Networks Prepared by Reaction Induced Phase Separation
K. Cota-Alvarez, G. Borruel, M. Arellano, May 2004

The effect of epoxy/hydrogen-amine ratio and thermoplastic molecular weight on the curing process and final morphology of epoxy thermoset-polysulfone blend is presented. The cure kinetics was followed by differential scanning calorimetry, the beginning of phase separation by was determined by visual inspection and final morphology was analyzed by SEM.

Curing Kinetics and Thermo-Mechanical Properties Modelling of a General Purpose Unsaturated Polyester Resin (UPR)
C.F. Jasso-Gastinel, E. Mendizábal, J.M. Vivero, May 2004

Using a 3 mm thick mold trying to reproduce common industrial situations, a general purpose UPR was cured with styrene, methyl ethyl ketone peroxide (MEKP) and cobalt naphthenate. Modelling of the curing reaction (using a 2k with 5 central points design), tensile and impact strength and glass transition temperature was accomplished. To obtain close fitting, parameters interaction was considered for modelling.

On-Line Flow Rate and Pressure Analysis with Sensor Fusion
David O. Kazmer, Bingfeng Fan, Ranjan Nageri, May 2004

Plastics injection molding has been limited by the lack of observability and controllability, such that it has not been possible to know or control flow rates and pressures at multiple locations in a mold. An instrumentation and analysis method is presented that allows the estimation of flow rate and pressure at multiple points in an injection mold. While potential improvements are discussed, the presented methods will assist real time process and quality control.

Novel High Flow Polymers and Their Applications
S. Yalvac, T.P. Karjala, May 2004

Novel high flow, low crystallinity polyolefin polymers offer a wide variety of attributes in a broad range of applications. The basic characteristics of these polymers and their usefulness in applications such as hot melt adhesives, flow modification, masterbatches and color concentrates, thermoplastic polyolefins (TPOs), and thermoplastic road markings will be discussed.

A Review of Diffusion in Automotive Polymers
M.P. McCourt, G.M. Mc Nally, W.R. Murphy, May 2004

This paper reviews the research over the past number of years on diffusion of fuels and fuel components into polymers used in near engine fluid and fuel delivery systems. The areas investigated cover Fourier Transform Infra-Red (FTIR-ATR) spectrometry and standard immersion procedures to measure the migration of fuel components in a series of fluoropolymer, polyester and polyamide materials at various temperatures.

Composite Material Transmission Cross Member Feasibility
Adam D. Myers, May 2004

General Motors’ next generation full-size truck frames are currently 80 pounds over their targeted weight. By replacing the current steel transmission cross member on General Motors’ full-size trucks through the application of a composite material transmission cross member, a substantial weight reduction will be achieved. Reducing the weight of General Motors’ full-size trucks will consequently increase the fleet-wide fuel economy for the company’s truck line, allowing CAFE requirements to be met more easily.

Novel Polymer Modifier Improves the Flow Characteristics of TPO Compounds
Brian W. Walther, Teresa P. Karjala, May 2004

The enhancement of one particular performance parameter in a Thermoplastic Polyolefin (TPO) is often tied to a decrease in another property. This trade-off is evident in the balance between compound viscosity and impact performance. While low melt index elastomers will result in higher impact performance, the increase in compound viscosity is undesired. This paper discloses the utility of adding ultra-low viscosity modifiers to a TPO to achieve high flow while retaining impact performance.

The Role of CAE in the Design of a TPV Weatherseal System
Ward Narhi, Shaival Mehta, Philippe Cusson, May 2004

Computer aided engineering has impacted the design process of weatherseal systems by reducing the number of prototypes needed to create a part. Finite Element Analysis is useful in predicting compression load deflection and frictional forces. Advances in FEA include how forces change over time and loading; stress relaxation, cyclic loading, compression set, and elastic recovery. This paper follows the design and prototyping of a unique weatherseal system and highlights the role of CAE.

SPE-Inspiring Plastics Professionals

© 2024 SPE-Inspiring Plastics Professionals.
All rights reserved.

84 countries and 60k+ stakeholders strong, SPE unites plastics professionals worldwide – helping them succeed and strengthening their skills through networking, events, training, and knowledge sharing.

No matter where you work in the plastics industry value chain-whether you're a scientist, engineer, technical personnel or a senior executive-nor what your background is, education, gender, culture or age-we are here to serve you.

Our members needs are our passion. We work hard so that we can ensure that everyone has the tools necessary to meet her or his personal & professional goals.

Contact Us | Sitemap | Data Privacy & Terms of Use



SPE US Office
83 Wooster Heights Road, Suite 125
Danbury, CT 06810
P +1 203.740.5400

SPE Australia/New Zealand
More Information

SPE Europe
Serskampsteenweg 135A
9230 Wetteren, Belgium
P +32 498 85 07 32

SPE India
More Information

SPE Middle East
More Information

3Dnatives Europe
157 Boulevard Macdonald
75017, Paris, France
More Information

Powered By SPE

SPE-Inspiring Plastics Professionals

SPE-Inspiring Plastics Professionals

SPE ImplementAM

SPE-Inspiring Plastics Professionals

SPE-Inspiring Plastics Professionals

SPE-Inspiring Plastics Professionals

  Welcome Page

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net