The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.
The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?
Nylon 66 was blended with maleated EPDM containing 0.5% of maleic anhydride. At 25% of maleated EPDM, impact strength increased 8-fold. On the other hand, modulus, strength, and DTUL decreased. The data suggested that the blend was too miscible, and might be improved by decreasing the maleic anhydride content to enhance phase separation.
In three ductile resins, polyphenylene ether sulfone (PPSU), a polycarbonate-acrylonitrile butadiene styrene (PC-ABS) blend and polycarbonate-polybutylene terephthalate blends (PC-PBT) use of a fiberglass coating that has little adhesion (non-bonding) to the resin matrix give superior impact strength compared to a traditional fiber coating with good matrix adhesion. The non-bonding glass gives reduced flexural and tensile strength but has comparable modulus to the traditional glass fibers with good matrix adhesion.
Guralp Ozkoc, Goknur Bayram, Erdal Bayramli, May 2004
The properties of short glass fiber reinforced poly(acrylonitrile-butadiene-styrene)/Nylon 6 (ABS/PA6) blends were studied using the interfacial adhesion approach. Work of adhesion and interlaminar shear strength values were calculated from experimentally determined interfacial tensions and short beam flexural tests. APS was selected as the coupling agent for the glass fibers because of its compatibility with PA6. Increasing wt% of the PA6 in the short glass fiber reinforced blend increased the tensile strength and tensile modulus.
Inorganic fillers are widely used to improve various properties of polymer materials. The dispersion of inorganic filler would undeniably influence the mechanical properties of a polymer compound. This paper describes the effect of the compounding order on mechanical properties of the PP/HDPE/Talc compounds which were prepared by changing the compounding order during the polymer compounding process. Consequently, the bending modulus and the impact strength of compound was improved, compared to that of general compounding.
M. Hernández, M. Ichazo, J. González, C. Albano, May 2004
Natural Rubber compounds with 15 phr filler (silica, wood flour and carbon black) were evaluated. Maximum torque, modulus, hardness and compression set increased when filler was present. Scorch time and curing time were also increased. A good reinforcement effect on the NR vulcanizate was observed when silica was used. There seemed to be very little influence of filler nature and particle size on properties studied; therefore, woodflour appears as an alternative and environment friendly filler.
D.C. McConnell, G.M. McNally, W.R. Murphy, May 2004
Two grades of thermoplastic polyurethane (TPU), one polyester and one polyether based, were blended with two grades of PVC with different K-values of 56 and 71. Mechanical analysis showed that impact strength and elongation at break improved significantly, and the tensile and flexural modulus decreased with progressive increase in TPU content. DMTA results suggested partial miscibility between the two polymers. The performance of the blends was shown to be more dependent on the PVC/TPU percentage content rather than the PVC or TPU type.
L.J. Broutman, Dale B. Edwards, B.D. Agarwal, May 2004
Steel wire reinforced polyethylene composite pipelines are a new technology product. The system is used for transport of oil, water, gas, and chemicals. This paper explains its new design concepts including micro-mechanics of load sharing and stress transfer. Recent test results will be reported to bring out its advantages over common plastic pipe and steel pipe.
This study involves a failure analysis on polyethylene liner pipes that had been installed as a corrosion protection liner in a high-pressure steel pipeline, operated at pressures up to 1500 psig. The peculiar fracture surface features are attributed to the stresses applied in service and to the geometry of the host pipe. The field failure times correlated extremely well with the published stress-rupture performance of the material.
Yun Bai, Uttandaraman Sundararaj, K. Nandakumar, May 2004
The heat transfer in a batch mixer was studied using experiments and simulation. The mechanical torque was measured experimentally. The dissipated power was calculated and compared with the simulation. The heat transfer coefficient from experiment was calculate by a lumped approximation and compared with the data from simulation. The transient temperature profiles were obtained and the temperature distributions in the nip between rotors and barrel wall were shown.
I.F.M. Major, G.M. McNally, A. Clarke, H. Ross, May 2004
Injection moulded propylene-ethylene block copolymer samples containing 0-8% fluorescent organic pigment were prepared. Mechanical and thermal analysis were performed within one week after processing and then again after 8 weeks. The results show that after natural ageing of the samples there were significant improvements in mechanical performance and a modification in the structure of the samples.
Epoxy-based adhesives for bonding aluminum substrates have gathered significant interest in recent years. Yet, more work is needed to learn how epoxy adhesives withstand creep and exposure to various environmental conditions. In this study, both experimental and modeling work (using Ngai's Coupling) has been conducted to predict creep behavior of epoxy adhesives under moisture exposure.
Nylon-6/clay nanocomposites with varying clay aspect ratios and particle orientations were prepared by a large-scale simple shear process, which alters the morphology within the nanocomposite. Tensile tests indicate that the modulus and strength of the nanocomposites decrease as both the clay aspect ratio and orientation are reduced. In nylon-6, however, the reduction of the clay aspect ratio and orientation leads to an increase in toughness and ductility.
The morphology and mechanical properties of glass fiber reinforced PC/ABS injection moldings were investigated. The effects of injection speed on them and the correlation between them were discussed. The morphology was drastically changed by ultra-high speed injection. The orientation of glass fibers was also changed and it results in lower decrease of tensile properties than injection moldings at common injection speed.
Munder Friedrich, Fuerll Christian, Hempel Heinz, May 2004
Bast fibers like flax, hemp or kenaf have excellent mechanical properties which predestine these fibers for reinforcement of composites. The real mechanical properties of the fibers were measured. Diameter of fibers, tensile strength, modulus of elasticity and breaking elongation are available.
A study of crystallization behavior and stretching of syndiotactic polystyrene cast film are considered. The isothermal crystallization rate of syndiotactic polystyrene was faster than isotactic polystyrene but slower than isotactic and syndiotactic polypropylene at the same ?T(?T=Tm–Tc). The birefringences of stretched films were developed faster than atactic polystyrene according to their stretching ratio. The crystalline orientation was represented in terms of stretching ratio.
In this work the synthesis of synthetic hectorite layered silicate - polyamide 66 nanocomposites by interfacial polycondensation is investigated to demonstrate the feasibility of the process and to produce viable nanocomposite product via this simple and low-cost process. Optimum reaction conditions and possible post-condensation treatments are identified for further study to obtain higher molecular weight product.
Electronic holography moiré is applied to the measurement of interfacial conditions between particle and matrix in a non homogeneous rubber material. A tensile specimen is subjected to creep loading. The loads are applied in steps and measurements are carried out at equal intervals of time. The final output is provided by the Holo-Moiré Strain Analyzer and gives the principal strains and their directions in the region of observation. A definition of adhesion as an experimental measurable quantity through the evaluation of contour integrals is introduced.
Innovative development and application of a multilayer GRP structure for chimney liners exposed to sulfur dioxide and sulfur trioxide are described.The structure is made by winding. It includes a chemical proof layer, a constructional layer and an external layer.Inspections have shown no deterioration of GRP after three months of operation. GRP are affective constructional material of the universal purpose.
Rakhil M. Sinelnikova, Valery G. Makarov, May 2004
A novel technique of estimating the lifetime of chemical resistant GRP is described.Destruction of GRP is considered as a heterogeneous chemical reaction of the first or zero order with constant energy of activation.Based on these estimations, it is recommended to use GRP for chimney liners exposed to sulfur dioxide and sulfur trioxide. Received results were used for forecasting of service life of GRP.
Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:
Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.
Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.
This site uses cookies to recognize members so as to provide the benefits of membership. We may also use cookies to understand in general how people use and visit this site. Please indicate your acceptance to the right. Learn More..