SPE Library

The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 

Search SPE Library
Keyword/Author:
After Date: (mm/dd/yy)  
 
Sort By:   Date Added  ▲  |  Publication Date  ▲  |  Title  ▲  |  Author  ▲
= Members Only
Conference Proceedings
Preparation an dMicrocellular Foaming Investigation of Poly (Lactic Acid)/Talc Composites
Zhang Wen-Hao, Fu Da-jiong, Chen Bin-yi, Wang Tao, Peng Xiang-fang, May 2013
This study investigated the influence of talc content on the mechanical/thermal properties and crystallization behavior of PLA/talc composites. Talc was compounded with poly (lactic acid) (PLA) via a triple screw extruder, and the foaming properties of the blends were investigated by using a homemade foaming device. Carbon dioxide was used as the blowing agent. The impact strength were significantly increased (by 10%-31%) at the expense of a certain degree of reduction of tensile strength. Owing to the nucleation effect of talc, the 5% talc blends received the maximum crystallinity (43.8%). Furthermore, when the talc content was 10%, the foaming sample obtained the maximum cell density and the minimum cell size.
A Nanoscaled Three Dimensional Structure Created By Using Electrospun Poly(?-Caprolactone) (PCL) Nanofibers and Induced PCL Crystallization
Xiaofeng Wang, Xiaofeng Wang, Max R. Salick, Xiaodong Wang, Zhixiang Cui, Yiyan Peng, Jian Han, Lih-Sheng Turng, Qian Li, May 2013
A nanoscale, three-dimensional structure consisting of poly(?-caprolactone) (PCL) nanofibers covered by periodically spaced PCL crystal lamellae was successfully created using a self-induced crystallization method. The shish-kebab structure was obtained by inducing PCL crystallization on electrospun PCL nanofibers immersed in a PCL solution followed by solvent evaporation. The resulting structure highly resembled the nanotopography of natural collagen nanofibrils in the extracellular matrix (ECM) of natural tissues and thus could be a good in vitro model for tissue engineering scaffolds.
Use of a Stack Mould to Increase the Productivity and the Quality in the Injection Molding
Maria V. Candal Pazos, Orlando Pelliccioni, María E. Fernández, May 2013
The main objective of this research was to study the effect of the injection process conditions over the quality and final properties of plastic parts made in stack moulds. For that, there were used CAD/CAE tools. As a result, it was obtained that when the melt and mold temperatures are increased, the volumetric shrinkage of the molded parts is also increased, and this coincides with the obtained results in hot runners’ moulds. By other hand, when the holding/packing pressure is increased, it is observed a decrease in the parts volumetric shrinkage, as well as in cold and hot runners’ moulds. When the melt temperature increased and the injection velocity decreased, the residual stress in the plastic parts are reduced.
Injection Molding of Rigid Vinyls
Paul Mastro, May 2013
Rigid Polyvinyl Chloride and Chlorinated Polyvinylchloride are highly viscous materials that are susceptible to thermal degradation. This combination makes them very challenging to process consistently and often require temperature conditions that are quite a bit different than what someone who has processed other thermoplastics is used to. Also, these materials require some special modifications to the molding machine to facilitate processing. By understanding how the polymer is responding to the process conditions imposed on it, a stable, repeatable process can be established that will produce consistent, high quality parts
Processing effects on permanent electrically conductive HDPE- Conductive Carbon Black composites
Daniele Bonacchi, Christine Van Bellingen, May 2013
Conductive carbon black is still today the most used solution to give permanent electrical conductivity to plastic materials. Electrical conductivity of the final material is known to be affected by processing history and especially final transformation processes as they can induce changes in the filler properties or distribution. In a recent work we highlighted the large difference in the percolation curves of the electrical resistivity of compression and injection molded samples of conductive and extraconductive carbon black loaded HDPE. Such difference can be addressed to different effects such as surface induced segregation, carbon black structure reduction or different crystallization of the polymeric matrix. In this work we investigate by simple but specific tests the relative importance of these factors evaluating their contribution to the modification of the final electrical properties of the material.
Thermo-Mechanical Property Prediction for Long Fiber-Filled Thermoplastics Composites
Xiaoshi Jin, Jin Wang, May 2013
Following on from the long fiber orientation and long fiber breakage model implementations in the past, long fiber enhanced polymer composite property calculation models have been implemented for long fiber-filled injection moldings. These long fiber composite properties are useful in terms of residual stress calculation, warpage prediction and subsequent structural analysis. Major differences between long fiber and short fiber composite property enhancements include the non-uniform fiber length distribution across injection molded parts and possible de-bonding between fiber and matrix. This paper addresses these differences by presenting a recently implemented micro-mechanical models specific to long fiber composites, which makes use of calculated long fiber orientation and fiber length distributions. A case study on fiber orientation distribution (FOD), fiber length distribution (FLD) and subsequent long fiber composite property distributions are given for injection molding simulation.
PVDF/ Carbon Nanotubes/Nanoclay Nanocomposites For Piezolectric Applications
Farhad Sadeghi, Ali Sarvi, Uttandaraman Sundararaj, May 2013
Poly(vinylidene) fluoride (PVDF) nanocomposite samples were prepared by incorporation of carbon nanotubes (CNT) and nanoclay into PVDF using a twin screw extruder. Carbon nanotube was added to improve electrical conductivity and nanoclay was included to enhance ? crystal formation for piezoelectric property. X-ray diffraction (XRD) results showed that partial melt intercalation of PVDF in clay was achieved. The XRD results also revealed that CNT and nanocaly addition increased ? phase crystal amount in PVDF. FTIR spectroscopy measurements confirmed the XRD results and showed that the effect of nanoclay on ? phase crystal formation of PVDF was more prominent than CNT. It was found that shear rate applied during crystallization would improve ? phase crystal formation but only for the neat PVDF. Conductivity results showed that addition of CNT improved conductivity as a percolation of 2 wt. % was observed. It was found that clay incorporation into CNT nanocomposite could improve conductivity more.
Simulation of Cooling Using a New Model for the Determination of the Thermal Diffusivity in Injection Molding by Means of the Radial Function Method (RFM)
Iván D. López, Alberto Naranjo, May 2013
A numerical simulation using a meshless method is developed to describe the cooling of injection molded slits of different thicknesses with an improved thermal diffusivity model that considers the effect of cooling rates and processing conditions. For the filling phase, the fountain flow effect is taken in account. Numerical results are analyzed by examining the effects of the traditional and improved thermal diffusivity model. The predicted effect agrees well with previous measured data. For the case studied in this paper, the use of the traditional model results in a temperature underestimation.
Observation of Higher Order Structure at Heat Seal Parts on Uniaxial Drawn PP Film
Kazushi Yamada, Reiichi Konishi, Kiyomi Okada, Tetsuya Tsujii, Ken Miyata, May 2013
Heat seal technology is an essential technique for intermediate packaging material for various industries. There are different kinds of sealing technologies, which would be selected for suitable heat sealed properties of the film. Heat sealing technique is conventional technology for heat sealed film by control temperature, pressure and dwell time. The conditions of heat sealed are important for controlled peel strength and heat sealed properties of the film. Furthermore, film strength depends on the drawn ratio and molecular orientation of film. However, the heat sealing ability of higher molecular orientation films are poor due to loss the heat sealing energy for relaxation of oriented molecules in polymer films. Therefore, it is very important to investigate the relationship between heat sealing conditions, molecular orientation, and higher order structure in polymer films on properties of heat sealed film. In this study, cast polypropylene (CPP) film was heat sealed by using heat sealing technique. The heat sealed condition was set at heat sealed time of 0.1 second with pressure of 0.2 MPa at various heat sealed temperature of 145 to 150 °C. The difference of higher order structure of these films was discussed on the basis of results of micro-Raman spectroscopy, FT-IR spectroscopy, DSC and peel test. From the result, it was found that higher order structure of PP films at heat sealed parts depends on heat sealing time, temperature, and drawn ratio of PP films.
Effect of Talc Filler on Recycled PET Blends Injection Moldings
Kazushi Yamada, Hiroyuki Hamada, Shuhei Tamada, Noriaki Kunimune, May 2013
Recycled PET (RPET) is known to exhibit brittle behavior in the presence of notches. Therefore, we tried to improve the toughness and other properties of RPET by incorporating E-GMA, talc filler and engineering plastics as an impact modifier and talc to increase the rigidity and heat distortion temperature of RPET. As a result, these blends with E-GMA exhibited significantly higher stiffness and strength especially with increasing E-GMA content. In addition, these blends with talc filler indicated the high heat distortion temperature due to increase the crystalinity of RPET blends. Therefore, it was found that talc played an important role in enhancing the heat resistance of RPET. Some injection molding parts, i.e. tray, chopstick, and so on, were produced from these compound materials.
Influence of Cooling Condition on Recycled PET Pellets
Kazushi Yamada, Megumi Setomoto, Hiroyuki Inoya, Hiroyuki Hamada, May 2013
In this study we have developed “dry-less pellets”, which absorbs less moisture and do not require additional drying prior to molding. The developing technique namely “Hot Air cooling System” involves coolinging the strands slowly with hot air on a metal conveyor. This study was carried out to clarify a relationship between moisture absorption fraction and crystalline structure of dry-less recycled poly(ethylene terephthalate) (RPET) pellets. Two diffent cooling systems of extrusion processes were performed including water cooling method and hot air cooling syatem. The effect of hot air cooling temperature on properties of RPET pellets was investigated. Karl Fischer moisture titration, differential scanning calorimetry (DSC) and density measurement were used to characterize the pellets to determine the structures of the dry-less pellets. From the results, we have succeeded for preparing the “dry-less pellets” by controlling the hot air cooling temperature condition in the extrusion process. The crystallization process of RPET pellets is an important characteristic for the “dry-less RPET pellets”.
The Effect of High-Recycle-Content on CSD PET Bottle's Thermal Stability
Jay Z. Yuan, Clinton A. Haynes, Patrick A. Harrell, May 2013
It is not uncommon to see a 25-30% post-consumer recycled (PCR) content in a carbonated soft drink (CSD) PET bottle on the market. With the growing availability of PCR resin, food and beverage brand owners are pushing for higher recycling content in their packaging. Recent studies have been published showing that high-recycling-content in PET packaging will adversely affect the performance of pressurized bottles when compared to virgin material or low-recycling-content counterparts. However, little has been done to quantify the degradation of the specific material properties that govern pressurized bottle performance. This paper focuses on quantifying changes in the short- and long-term material properties that govern a bottle’s ability to retain its original shape when subjected to sustained carbonation pressurization. This performance attribute is typically characterized as ‘thermal stability,’ which is the ability of the package to retain its shape and molded-in feature definition over time, after pressurization. Two commercially available packages, one molded of 100% recycled PET and another molded of typical PET (30% recycled PET content), are used to extract the test samples. The study indicates that the effect of the high-recycle-content on the CSD PET bottle cannot be over-looked. The results of the tensile tests show that the 100% recycled PET is stiffer and tougher in the axial direction (up to 26%), but softer and weaker in the hoop direction (up to 14%), compared with its typical PET counterpart. Based on the creep test results, the 100% recycled PET also creeps 50% faster. This will have a noticeable effect on the bottle’s thermal stability, which is only 1-2% (height and diameter growth or contraction under carbonation pressure) for most commercial packages on the market. The effect will become more pronounced for non-cylindrical designs or designs with non-cylindrical features. Failure to adequately retain the bottle’s shape (thermal stability) will a
Mechanical Properties of High Density Polyethylene - Pennycresss Press Cake Composites
Louis Reifschneider, Brent Tisserat, May 2013
Pennycress press cake (PPC) is evaluated as a bio-based fiber reinforcement. PPC is a by-product of crop seed oil extraction. Composites with a high density polyethylene (HDPE) matrix are created by twin screw compounding of 25% by weight of PPC and either 0% or 5% by weight of maleated polyethylene (MAPE). Tensile, flexural, and impact properties are assessed from injection molded test specimens. An improved PPC bio-filler was produced by solvent treating PPC (STPPC). Composite blends composed of STPPC were superior to their PPC counterparts. Composites made with STPPC and MAPE had significantly improved tensile and flexural properties compared to neat HDPE.
Evaluation of Degradation Characteristics at the Interface Between Glass Fiber and Resin of Glass Fiber Reinforced Plastics for Hot Water Application
Hiroyuki Yamamoto, Kazushi Yamada, Hiroyuki Nishimura, May 2013
Engineering plastics are generally used for parts in the path of hot water in a water heater and a domestic co-generation system. In this research, the long-term performance of short glass-fiber or long glass-fiber reinforced mPPE, and short glass-fiber reinforced PPS were investigated for thermal resistance due to hot water immersion and hot air exposure. The acoustic emission analysis was also conducted to investigate the cause of an initial change in mechanical properties by the bending test and the Izod impact test. As a result, the bending strengths of PPE and PPS after hot water immersion decreased due to degradation at the interface between a matrix resin and a glass fiber.
Additives to Improve Regrind Utilization and Recycling of High Barrier Blow Molded Containers
Jose M. Torradas, Renata O. Pimentel, David M. Dean, May 2013
The ability of maleic anhydride grafted polymers to compatibilize non-polar polyolefin polymers with polar polymers or contaminants has been confirmed and publicized by a number of experts in the field. This study reports on a new generation of random copolymers of ethylene and anhydride functional monomers specifically designed for compatibilizing blends of polyethylene polymers with polar components (other polymers or additives) in mixed recycle streams. The results show that these copolymers, with a very high level of reactive functionality (>3% wt. of anhydride), improve the impact strength of molded or extruded part made from mixed recycle streams containing Polyethylene Vinyl Alcohol (EVOH) or Polyamides (PA) even when the scrap contains high levels of moisture, lubricants or other resins. Two practical examples are discussed: use in regrind layers of extrusion blow molded containers and use in recycling of mixed polymer streams to produce other parts.
Numerical Modeling of Fire Resistance of FRP Composite Fire Wall Panel
Sushant Agarwal, Hota GangaRao, Rakesh K. Gupta, May 2013
A 3.048 m x 3.048 m (10’ x 10’) non-load bearing fire wall panel was tested for its fire resistance according to ASTM E119 standard furnace test. This fiber reinforced plastic (FRP) composite wall panel was found to have 1 hour fire resistance rating. A finite element model was developed to simulate the thermal behavior of the wall panel under the ASTM E119 conditions. COMSOL 4.3a Multiphysics finite element software was used to solve the time-dependent heat and mass balance equations to determine the temperature of the unexposed face of the wall panel. Excellent agreement was found between the results of the numerical simulation and data from the ASTM E119 test indicating the usefulness of the numerical methods in evaluating fire-resistance of structures.
Calculation on the Residual Stresses of Injection-Molded Conductive-Carbon-Fiber-Filled Polymer Composites
Tongchen Chang, Guangpei Jiao, Haihong Wu, Zhenfeng Zhao, May 2013
In order to improve the conductivity of the molding fabricated with conductive-carbon-fiber-filled polymer composites, we investigated, using layer removal method, the distribution of the residual stresses of injection-molded conductive-carbon-fiber-filled polypropylene in this paper. Integrated effects of conductive carbon-fiber(CCF) orientation and its mass fraction at different positions on the residual stresses of the molding, we calculated the modulus of the molding sample using the classical laminate theory(CLT) of composites, and obtained the residual stresses distribution.
A Study of Filled Volume in a Co-Rotating Twin-Screw Extruder Using Analysis of Residence Time Distribution
Babu Padmanabhan, Prakash Hadimani, Yashwanth Gowda, May 2013
The co-rotating twin-screw extruder is a mixing vessel with a certain free volume. The actual filled volume inside the extruder is expected to change at different screw speeds and at different feed-rates. The screw configuration plays a role in the actual filled volume in the extruder. Hitherto, the precise determination of the filled volume, a matter of great importance to understand the process, was not practical. A method based on using Residence Time Distribution (RTD) to determine filled volume is developed and presented in the form of a simple block diagram. The changes in filled volume at different conditions become the basis for a mathematical model for the twin-screw extruder.
High Thermal Conductivity of Thin-Wall Injection Molded Parts for Novel Polymer CompositesI
Hiroshi Ito, Tetsuo Takayama, Yasunori Matsushita, Masanori Yamazaki, May 2013
The processability and higher-order structure of thin-wall parts with ceramics filled polymer composites as a matrix polymer of poly(butylene terephthalate) (PBT) were investigated to produce new polymer composites with high heat diffusivity. Effects of boron nitride (BN) particles, aluminum oxide (Al2O3) and aluminum nitride (AlN) fibers composition and process parameters on processability, thermal property, and internal morphology of parts were discussed. Thermal diffusivity and thermal diffusivity increased concomitantly with increasing ceramic contents. In the case of AlN fiber, the thermal property was dependent upon the polymer and AlN fiber orientation. It is important to control the AlNorientation for improvement of heat-release characteristics. Overall, high processability and thermal properties were achieved using the polymer/AlN composites.
Application of Design of Experiments Methodology in the Kinetics of EPDM vulcanization reaction
Nora Catalina Restrepo-Zapata, Tim A. Osswald, Juan Pablo Hernandez-Ortiz, May 2013
The vulcanization kinetics of EPDM is studied using Differential Scanning Calorimetry (DSC) method. An unusual endothermic peak is found over the range of temperature where the vulcanization peak (exothermic event) occurs. Therefore, this study uses a methodology based on Design of Experiments (DOE) to determine and analyze the effect of the different additives present on the compound considering four response variables: Number of peaks presented in the range of vulcanization temperature (between 90°C and 250°C), initial and final temperature of the vulcanization peak, and the value of the heat of vulcanization. This methodology can be extrapolated to thermoplastic and thermoset material and helps to determine in an economic way the thermal effect of additives on thermal processing variables.


This item is only available to members

Click here to log in

If you are not currently a member,
you can click here to fill out a member application.

We're sorry, but your current web site security status does not grant you access to the resource you are attempting to view.




spe2018logov4.png

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers, ISBN: 123-0-1234567-8-9, pp. 000-000.
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net