SPE Library

The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 

Search SPE Library
Keyword/Author:
After Date: (mm/dd/yy)  
 
Sort By:   Date Added  ▲  |  Publication Date  ▲  |  Title  ▲  |  Author  ▲
= Members Only
Conference Proceedings
Application of Pulsed Electrochemical Machining to Micromold Fabrication
Blaine Lilly, May 2000
Pulsed electrochemical machining (PECM) is an effective method for removing EDM surface damage from tool steels, while maintaining the surface geometry to close tolerances. Mold steels show improved fatigue life after PECM when compared to steel machined by EDM. Because the tool does not wear during machining, PECM also shows promise as a method for machining micromolds. This paper reports on mold finishing research using PECM, and ongoing work applying the technology to micromachining of mold cavities.
Understanding Color Technology
Scott A. McCabe, May 2000
The production of custom colored thermoplastic elastomers often involves the use of color concentrates provided by a color house. In order to effectively communicate color requirements, a good understanding of the principles of color technology is a necessity. The basic principles of color theory will be discussed and current industrial practices of measuring color will be presented. Proper selection of color tolerances will be illustrated with several case studies.
Investigation of the Melting Mechanism within a Groove-Feed Single-Screw Extruder
Michael R. Thompson, John P. Christiano, May 2000
The melting mechanism of LLDPE in a groove-feed extruder was studied through crash-cooling the machine and examining the solidified polymer on the screw. The solids-conveying angle appeared as high as 70° near the end of the grooves, reducing to the helix angle of the flight within the melting zone of the screw. Melting was dependent on the dissipated mechanical energy derived from the high internal friction within the solid bed and solids deformation whilst in the grooved feed section.
Evaluation of Thermoplastic Polyurethane Based Thermoplastic Vulcanizates for Interior Automotive Applications
Michihisa Tasaka, Naganori Masubuchi, May 2000
Although thermoplastic polyolefins (TPOs) have been considered as costwise and environmentally attractive materials, they face the difficulty in being used as potential automotive applications because of poor scratch resistance and oil resistance. The new thermoplastic vulcanizates (TPVs) composed of thermoplastic polyurethane (TPU) / polypropylene (PP) /polystyrene-block-poly(ethylene-co-propylene)- block-polystyrene copolymer (SEPS) systems have been found out to have outstanding oil resistance and scratch resistance. Now they can be used for various kinds of automotive applications such as injection molded, blow molded, extruded, calendered and further, slush molded automotive parts, particularly for automotive interior skins without any coat. The essential issue is conceivably just prolonged weathering resistance and durability. In this paper, this new TPVs are evaluated from the standpoints of weathering stability, long term heat aging and fogging as well as the mechanical and physical properties.
Study of the Characteristics of Thermoplastic Vulcanizates of PP/SEPS/SBS Blends
Michihisa Tasaka, Shinzo Saito, May 2000
Thermoplastic vulcanizates (TPVs) of polypropylene (PP)/polystyrene-block-poly(ethylene-co-propylene)- block-polystyrene copolymer (SEPS) are able to become much more fascinating for automotive and architecture industry by using polystyrene-polybutylene-polystyrene copolymer (SBS) together. While SBS decreases tensile strength in these systems , it does improve compression set and oil resistance greatly and furthermore, overall balance of properties improve in proportion to the amount of peroxide as coupling agent and acrylic ester as coupling coagent. The goal of this study is to investigate the interaction between SEPS and SBS, which are dynamically crosslinked and microdispersed in PP matrix from the point of mechanical behavior and morphology.
Characterization of Dual Crystalline Texture and Process-Structure-Property Relationships in HDPE Blown Films
Jianjun Lu, Hung-Jue Sue, Thomas Rieker, May 2000
The crystalline texture in selected high-density polyethylene (HDPE) blown films was studied using transmission electron microscopy, small-angle X-ray scattering and infrared dichroism. An orthogonally oriented dual crystalline texture was found. This structure appears to consist of two superimposed uniaxial crystalline textures. In one texture the lamellae are stacked along the machine direction, while in the other, the lamellae are stacked along the transverse direction. The lamellar populations in the two textures are affected greatly by the neck height of the film blowing process. The mechanical properties of the HDPE films can be well correlated with the dual crystalline texture observed.
Relationship between Local Residence Time and Distributive Mixing in Sections of a Twin Screw Extruder
Gifford Shearer, Costas Tzoganakis, May 2000
Local residence time and distributive mixing were measured in conveying sections and kneading blocks of a twin screw extruder. The residence time measurements were completed using carbon black as the tracer and an infrared temperature probe to detect the temperature decrease caused by the changing surface emissivity. A mixing limited interfacial reaction between polymer tracers was used to directly measure the distributive mixing. Possible relationships between mixing and residence time in the sections of the twin screw extruder were investigated by combining these two measurements.
Rheology and Degradation Kinetics of Poly(ethylene terephthalate)/Poly(ethylene naphthalate) Blends
S.R. Tharmapuram, S.A. Jabarin, May 2000
Blends and copolyesters of poly(ethylene terephthalate)/poly(ethylene naphthalate), PET/PEN, have shown promise in high performance container applications. Both rheology and degradation kinetics of these blends have been studied as a function of material composition. Melt viscosity loss was measured as a function of time and temperature. Activation energies for degradation were calculated from experimental data. Results show that blends containing a minimum of 10% PEN by weight are as stable as PEN. Addition of low amounts of PEN to PET causes a depression in melt viscosity. A critical composition of 10% PEN by weight is required before we observe an increase in blend viscosity.
A New Barrier Screw Design Utilizing Solid Bed Deformation with Forced Melt Removal
John P. Christiano, Michael R. Thompson, May 2000
A new patent pending barrier screw geometry incorporating modifications to the solids channel of the barrier section of the screw was introduced to improve melting and mixing efficiency. The new design geometry repeatedly deforms the solid bed to improve melting and mixing. Cross channel pressure gradients and screw pull-outs obtained from crash cooling experiments were used to investigate the working principles of the new design. The results were compared to those obtained under similar conditions with a conventional barrier screw.
Towards Design Guidelines for Injection Molded Biodegradable Plastics Products
Prabhu Kandachar, Rolf Koster, May 2000
Specimens of two semicrystalline biodegradable thermoplastics, polyester-amide and polyhydroxybutyrate, injection molded at various settings, have been tensile tested. Upper limits to wall thicknesses with respect to surface appearance were found less severe than for traditional plastics. Molding settings appeared important for mechanical behavior. A higher degree of crystallization was obtained for polyhydroxybutyrate when the cooling rate was decreased. The lowest possible mold fill pressures appeared preferable, increasing ductility for both materials.
A Novel Gas Driven Dual Barrel Capillary Rheometer
A. Goettfert, May 2000
A new capillary rheometer has been developed which is gas driven using a high-precision pressure controller. The flow rate is determined on-line. A precision pressure transducer controls the applied pressure to a maximum 21 MPa with an accuracy of better than 0.1%. The rheometer described here has a twin barrel system. Due to the equilibrium N2-pressure control in both barrels, creep tests can be performed, applying constant pressure irrespective of the installed die geometry. The flow rate from each barrel is independently measured.
Flow Surging in Single-Screw, Plasticating Extruders
Mark A. Spalding, Joseph R. Powers, Phillip A. Wagner, Kun Sup Hyun, May 2000
Flow surging in single-screw, plasticating extruders is the variation of the machine's rate with time, and it generally leads to higher production costs, lost production, and often higher scrap rates. Flow surging can originate from many different sources including machine controls, resin feedstock variation, screw geometry, and machine temperature. This paper will focus on flow surging that originates from improper solids conveying, and it will present experimental data and corrective action to eliminate or minimize surging.
The Heating/Melting Mechanism of Plastic Energy Dissipation
Myung Ho Kim, Costas G. Gogos, May 2000
The Paper discusses the bulkwise heat source melting mechanism, we have termed Plastic Energy Dissipation (PED). When solid particulates are deformed in the melting section of polymer processing equipment, where melting occurs in a dissipative mix melting mode, part of the applied mechanical energy to deform solid particulates dissipates into heat. The amount of heat dissipation is quite large for both amorphous and semicrystalline polymers. A number of PED experiments were conducted as functions of strain rate, strain and temperature and the iso-temperature rise plots were obtained in temperature-strain space for commercial amorphous and semicrystalline polymers. A method to estimate melting length for Co-TSE was also developed.
Transesterification Reaction Kinetics of Blends of Poly(ethylene terephthalate) and Poly(ethylene naphthalate)
S.R. Tharmapuram, S.A. Jabarin, May 2000
Blends of poly(ethylene terephthalate)/poly(ethylene naphthalate), PET/PEN, have exhibited properties that are of commercial interest to the packaging industry. Melt processing of PET with PEN results in transesterification reactions. The blend properties are controlled by the kinetics of these reactions and these have been widely studied. Modifications to the chemical kinetic equations have been made to predict a theoretical processing temperature for different compositions of the blends to achieve critical transesterification. These values were found to be in close agreement with the experimentally observed values when blends were processed in a twin screw extruder.
The Influence of Morphology on the Impact Performance of an Impact Modified PP/PS Alloy
S.P. Bistany, May 2000
Brittle impact failures were observed at low temperature on blow molded parts made from a PP/PS alloy that is normally ductile for injection molded parts tested at same temperature. An investigation was launched to determine the cause of these failures. SEM analysis on the inside surface of the blowmolded part revealed the presence of micro-voids and large spherulites. Additionally, cross-sectional analysis of the inside surface showed coalescence of the impact modifier. These factors are believed to have contributed to the brittle failures. A test method was developed in an attempt to confirm these findings.
Shrinkage Behavior of Oriented Poly(ethylene terephthalate)
R. Mody, E.A. Lofgren, S.A. Jabarin, May 2000
The kinetics of thermal shrinkage of poly(ethylene terephthalate) films have been characterized and related to various parameters of the stretching process. Amorphous orientation functions and levels of crystallinity have been found to be of major importance to the shrinkage process. As film extension ratios increase, shrinkage behavior passes through five different regions. Shrinkage first increases with extension ratio, decreases with further extension to reach a minimum, and then increases again as extension is continued to higher levels. A schematic model has been proposed to describe molecular changes in polymer chain structures, within each of the shrinkage regions. Activation energies of shrinkage have been determined in addition to equilibrium shrinkage and shrinkage rate constants.
Filament Winding of Bicomponent Fibers Consisting of Polypropylene and a Liquid Crystalline Polymer
Jianhua Huang, Priya Rangarajan, Jay Sayre, Alfred C. Loos, Donald G. Baird, May 2000
Bicomponent fibers consisting of a sheath of polypropylene (PP) and a core of thermotropic liquid crystalline polymer (TLCP) were used in filament winding to form tubes suitable for transporting liquid oxygen. As the first step, the TLCP/PP bicomponent fiber was spun and the mechanical properties of the fibers were determined as a function of temperature to establish the conditions suitable for filament winding. Under these conditions the tensile modulus and strength of the filaments can be maintained in the filament wound products.
Heat Transfer in Extruder Screws
Stephen J. Derezinski, May 2000
In the study and modeling of the resin temperature in extruder channels, the screw is commonly assumed adiabatic. However, the resin begins as a cold solid and is melted and heated as it flows, which requires that the screw also be cold at the entrance and hot at the exit. Heat must, therefore, be conducted in the screw metal from the hot end of the screw to the cold end, which requires heat transfer with the melt. Also, the heat capacity, especially of larger extruders, can require significant time to attain steady-state operation. A model of transient heat conduction in the screw coupled to heat transfer with the resin feed, melting, and pumping is used to investigate these two phenomena.
Electrospun Nanofibers of Electronic and Photonic Polymer Systems
C. Drew, X. Wang, K. Senecal, H. Schreuder-Gibson, J. He, S. Tripathy, L. Samuelson, May 2000
Electrospinning employs strong electric fields to create nanometer scale fibers. The fibers are collected as a non-woven fiber membrane with a very large surface area to volume ratio. Sulfonated polystyrene, enzymatically synthesized polyaniline and blends thereof, and dye-sensitized composite polymeric systems were electrospun and studied to optimize fiber formation. It is expected that these types of electrospun materials will find potential use as new lightweight electronic and photonic materials in numerous device applications.
A Fast Approach to Automotic Runner Balance
Kun-Chih Chen, Rong-Yeu Chang, David C. Hsu, Alice S. Lin, Kelly Lu, May 2000
Runner balance is one of the most important issues to be addressed for multi-cavity mold in the mold design phase. Poor runner sizing will lead to Christmas tree filling pattern and hence different residence time of plastic melt on each cavity. This leads to excessive packing pressure on small cavity and part weight variation. This problem becomes more crucial for the so-called family mold. In this work, the concept of flow balance index (FBI) is proposed to address this problem. Real industrial cases are studied by this new approach and are verified by molding trial results.


This item is only available to members

Click here to log in

If you are not currently a member,
you can click here to fill out a member application.

We're sorry, but your current web site security status does not grant you access to the resource you are attempting to view.




spe2018logov4.png

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers, ISBN: 123-0-1234567-8-9, pp. 000-000.
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net