SPE Library

The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 

Search SPE Library

Sort By:  Date Added   Publication Date   Title   Author

Conference Proceedings

Synergistic Reinforcing And Toughening High Density Polyethylene By Introducing Dynamic Shear Force Field And Ultrahigh Molecular Weight Polyethylene
Tong Liu, May 2018

In this work, simultaneously strengthened and toughened high density polyethylene (HDPE) composites were successfully prepared by the self-designed loop oscillating push-pull molding (LOPPM) machine. A series of related characterization methods were used to investigated the properties of resulted samples. The tensile strength, impact strength and Young's modulus of LOPPM samples was dramatic increased compared to the CIM samples due to the existence of aligned shish-kebab, demonstrating a simultaneously reinforced and toughen HDPE-based sample was obtained. SEM and 2D-WAXD results indicated that the incorporation of complex dynamic shear force field and UHMWPE induced the highly crystal orientation and thus regular shish-kebab was observed. According to the relationship of structure and properties, the mechanism of simultaneously strengthened and toughened was discussed and provide a controlled way to manipulate the congregated structure of crystalline polymer via external dynamic force field.

Effects Of Extruder Screw Configuration On Thermal Properties Of Glass Fiber Reinforced Polyamide 6 Composites Throughout The Direct Long-Fiber-Reinforced Thermoplastics Process
Takashi Kuboki, May 2018

This study investigates the effects of screw configuration of the second extruder on the thermal properties of glass fiber reinforced polyamide 6 (PA6) composites throughout the direct long-fiber reinforced thermoplastic (D-LFT) process. Two screw configurations, which generate low and high shear stress in composite melts, were applied to the second twin-screw extruder in the D-LFT process. Thermogravimetric analyses (TGA) and differential scanning calorimetry (DSC) analyses were performed on samples taken from different locations along the D-LFT process. TGA results showed that thermal stability of the final products can be improved by decreasing shear stress in composite melts in the second extruder. Non-isothermal DSC crystallization analysis revealed no substantial changes to the material’s degree of crystallinity with the variations in screw configuration. Isothermal DSC crystallization analysis also showed that the screw configurations had little effect on crystallization half-time of the final products.

Carbon Black Selection For Successful Through Transmission Laser Welding And Joining
Avraham Benatar, May 2018

Laser welding to join thermoplastics is used in a wide range of applications because it is a non-contact heating method with short cycle times. and lower cost. For both surface heating and through transmission heating, carbon black is the most frequently used colorant. It was found that carbon black types that have low particle aggregation and distribution were most effective for laser heating. Experiments with laser line beam scanning showed that a slight tilt in the laser head could produce different heating when traveling forward as compared to backward. For dissimilar polymer joining, it was found that surface texturing increased the adhesion joint area and the amount of mechanical interlocking resulting is superior joints.

Robotic Use In Pad Printing
Chris DeMell, May 2018

Factory automation is quickly becoming more common place in today’s manufacturing sector. With labor shortages and rising wages; factories want to automate pad printing to replace workers. Unfortunately, most companies are not doing this because of technical and commercial reasons. Pad printing machines have evolved into complex pieces of equipment many with precision movements with guide rails and servo motors. However, over 95% of pad printing machines are loaded by on operator. An operator will feed the parts into the machine and take them out at the end of the cycle. Pad printing can be more challenging to automate than other processes due to the diversity of products that can be run in one machine and the sensitivity of the inks to the process. Pad printing is behind on the automation of loading parts into a printer. Many companies have developed high level machines with vision systems, rotating fixtures, high speed movements, auto unload, etc… but the system is still loaded by an operator. This operation can many times use more than just the loading operator because there must be someone to bring raw goods to the machine, take finished goods away from the machine, and tend to the inks and other needs of the printing equipment. It takes little imagination to realize that one operator can run a cell like this if the material were automatically loaded and unloaded from the print system. A common answer for this is feeder bowl technology. Many times, feeder bowls are a good solution for this type of situation, however, this is a large investment and it is dedicated to a particular product. Most managers are looking for more diversity in their solutions and want to be able to change things later, this makes a feeder bowl a limited solution. By using robot technology, one can automate the loading of the work cell and have a flexible solution. A robot can be set up with memory and be used to perform many different tasks if the proper job is put into the memory. The capital cost is still there, but the dedicated solution becomes a diverse solution that can utilized for many different projects.• Details to fill in:o Methods of delivery product to a robot Conveyor with camera to tell robot where product is Conveyor with dead stop nest • Both of these systems can be tied to an injection molding machine Tray• Stack up and stack downo Different styles of robots and their specific capabilities 6 axis SCARA Gantryo Technological advancements in pad printing to allow for full automation Automatic ink viscosity Tape clean Camera inspectiono Other reasons why full automation is better than an operator Consistency Productivity Speed

Applications For Low Energy Ebeam Curing Technology In Consumer Product Flexible Packaging Applications
Anthony Carignano, May 2018

Ultraviolet (UV) and low energy electron beam (ebeam) curing technologies are often grouped together. Both technologies are used to initiate the rapid polymerization of the monomers and oligomers contained in photopolymer coatings, inks and adhesives in a process referred to as "radiation curing" or "energy curing."  This presentation will discuss the fundamental differences between UV and ebeam curing technologies and include a discussion regarding the typical differences in formulations and curing equipment configurations commonly used for UV versus ebeam applications.  The presentation will then focus on the evolution of low energy ebeam applications and its “miniaturization” over the past decade. Ebeam piezo inkjet printing along with electrophotographic printing and embellishment applications for indirect food contact filmic packaging will be discussed. This presentation will discuss the variety of visual and tactile affects that can be achieved with ebeam finishing for flexible packaging applications using both 100% solid and waterborne photopolymer chemistry. The presentation will then review inline and near line standalone integration options for ebeam which focus on extending the future application potentialof ebeam into 2D and 3D functionalized surfaces which incorporate printed electronics.

Effects Of Surface Treatment On Hard To Bond Plastics
Matthew Miner, May 2018

Difficult to bond plastics, such as polyolefins and fluoropolymers, are commonly used in various industries for some of the following reasons: the cost of the materials and their inherent chemical and thermal resistance. It can be challenging for manufacturers to find solutions to join these difficult to bond materials together.This paper will provide background information on difficult to bond materials, review techniques for quantifying the surface energy of a plastic, review the latest solutions for surface modification and introduce innovative adhesive solutions to meet the challenges ofbonding these specific substrates.

One-Step Electrochemical Treatment Of Metal Inserts For Tight Polymer-Metal Hybrid Applications
Tobias Kleffel, May 2018

One common method for the manufacturing of electronic systems with a high resilience is the encapsulation of metal inserts using assembly injection molding. Due to the exposure of such parts to different mediums such as oil or saltwater during use, ensuring tightness still is a challenge. This paper deals with the assembly injection molding of tight electronic systems using microstructures on the metal insert introduced by a one-step electrochemical treatment. It can be shown that the electrochemical treatment increases both the tightness and the strength of the bond between metal insert and polymer component. Furthermore, the effects of the electrochemical treatment on the surface and geometry of the metal insert are presented.

Thermoelectric Properties Of Open Cellular Polymer Templates Coated With 1D And 2D Carbon-Based Nanoparticles
Siu Ning (Sunny) Leung, May 2018

In this study, a novel technique was developed to fabricate organic thermoelectric (TE) materials with enhanced TE conversion efficiencies. The synergistic effects of multi-walled carbon nanotubes (MWCNT) and graphene nanoplatelets (GNP) as conducting nanofillers were investigated to enhance the TE properties of polymer nanocomposites. Polyvinylidene fluoride (PVDF) foams with open-cellular structures were employed as polymeric templates in combination with MWCNT and GNP as hybrid conducting fillers, to fabricate polymer nanocomposite foams for TE applications. The results of this study proved the template-assisted localization of conducting nanofillers within polymer matrices as an effective strategy to simultaneously tune all TE parameters of polymer nanocomposites and substantially promote their TE efficiency. Experimental results also revealed that utilizing hybrid nanofillers with optimized mixing ratio is beneficial for promoting the TE efficiency of polymer nanocomposite materials because of the synergistic effects of the 1D and 2D structures of the conducting fillers.

Effects Of Processing Variables On Crystallization Phases Of P(Vdf-Trfe-Cfe) Thin Films
hao pan, May 2018

In this work, Poly (vinylidene fluoride-trifluoro-ethylene-chlorofluoroethylene) terpolymer [P(VDF-TrFE-CFE)] has been prepared as thin films with different processing conditions including coating temperature, annealing temperature and nanoclay loading level. The chain conformation of obtained films was studied by Fourier transform infrared (FTIR) and X-ray diffraction (XRD). It is shown that lower coating temperature is favorable for obtaining β-phase crystals, whereas higher annealing temperature leads to α-phase. Nanoclay can be added to increase total crystal amount.

New Transparent High Heat Polycarbonate Copolymer Resins For Thermo-Optical Applications
Mark van der Mee, May 2018

SABIC has launched a new LEXANTM CXT resin portfolio designed to offer potential solutions for optical lenses with its unique combination of high heat resistance, water clear transparency and high flow in a broad processing window. The high heat resistance of these resins may allow the use of assembly processes like low temperature soldering of parts onto printed circuit boards, and/or demanding part operation conditions. The high flow capability of LEXAN CXT resins without excessive yellowing may allow significant benefits in productivity and system cost.

High Temperature Dielectric Film
Matthew Niemeyer, May 2018

A review of the key CTQ’s of high heat dielectric films and their relationship to the manufacturing process and electrical performance of a wound film capacitor. Clean energy, global CO2 reduction and the electrification of vehicles have been driving factors for the need for higher performing - higher temperature film products. SABIC has recently commercialized ULTEM UTF120 capacitor grade film, developed to meet the most stringent technical capacitor demands through a wide temperature range (-40 to +175 °C) and exhibits stable properties through temperature and frequency. Film is available for multiple applications requiring high temperature resistance during processing or end use.

Highly Filled Biochar/Ultra-High Molecular Weight Polyethylene/Linear Low Density Polyethylene Composites For Electromagnetic Interference Shielding
SUIYI LI, May 2018

Highly filled biochar/ultra-high molecular weight polyethylene (UHMWPE)/linear low density polyethylene (LLDPE) composites were prepared using extrusion and hot-compression methods. Bamboo charcoal (BC) carbonized at 1100 °C exhibited good electrical conductivity and had strong interfacial interactions with the polymer matrix. The addition of BC remarkably improved the electrical conductivity and electromagnetic interference (EMI) shielding effectiveness (SE) of the composites; the composite with 80 wt.% BC had a conductivity of 107.6 S/m and an ultra-high EMI SE of 46.7 dB at 1500 MHz. The loading of BC did not severely affect the crystal structure of the UHMWPE/ LLDPE blend.

Mechanical Characterization Of Polycarbonate Reinforce With Woven Glass Fiber.

This work presents the physical and mechanical characterization of a polycarbonate reinforced with 4 % woven glass fiber oriented at 0/90° and ± 45° produced by film injection and compression molding process.Fiber alignment, volume fractions, and density were measure; these results showed an improvement of 141% in tensile strength for the specimens reinforced with 0/90º glass fiber, as compared to the specimens without reinforcement. The film injection-compression process reduces fiber misalignment in a range of 1.16° to 2.13°.This result proves the potential for the fiber-woven polycarbonate as a useful material for thermoplastic polymers. The production of composites by film injection-compression molding presents the advantage of being manufactured with faster production cycles than thermosets.

Correlation of Chain Dynamics to Mechanical Properties of High Performance Crosslinked Systems
Shaw Hsu, May 2018

The merits of crosslinked polymers (thermosets such as epoxy, imine and phenolics) include high mechanical performance and dimensional stability especially at elevated temperatures. However, these attractive physical attributes are also the reasons making them extremely difficult to characterize. In our laboratory, we have used a combination of techniques (DSC, infrared and low field NMR) to clarify the underlying structure responsible for the macroscopic properties observed. DSC provides information regarding the onset curing temperature and the extent of curing. Both near and mid-infrared spectroscopy provide information regarding the chemical structures being formed. We found the low field NMR (LFNMR) to be extremely informative regarding segmental mobility of the crosslinked chains. This unconventional usage of NMR has shown to be effective in establishing the correlation between the spin lattice relaxation time and the mechanical properties obtained for the various types of crosslinks employed. We have analyzed two types of crosslinked systems, one based on phenolics and a second one based on well-characterized epoxies with known crosslink density. By fitting the spin lattice relaxation data at different temperatures to theory, the average activation energy for the molecular motion were obtained. Therefore, the increase in the activation energy to achieve mobility and the broadening of relaxation distribution can be determined quantitatively. The results of our study provide the foundation to analyze the crosslinking process and the resultant structure of high performance crosslinked systems.

Chasing The Bottom Of The Energy Landscape: Vapor Deposited Amorphous Fluorocarbons
Gregory McKenna, May 2018

One of the major challenges in the study of the behavior of glass-forming materials, including polymers, is to know the equilibrium behavior below the glass transition temperature Tg. This is due to the need for a fundamental understanding of the equilibrium behavior in order to have a baseline to the non-equilibrium response inherent in the deep glassy state where materials are used[1]. In the present work we describe experiments in which we have used vapor deposition methods to make extremely stable amorphous fluorocarbon polymer films which have fictive temperature reductions relative to the Tg of nearly 60 K[2]. Hence, they are deep into the energy landscape[3]. By making viscoelastic measurements on films of these materials one can establish upper bounds to the equilibrium relaxation times and, consequently test theories of the glass transition and potentially distinguish among different theories. In particular, one can compare the dynamics with those expected by the theories, but now far below Tg. Initial work suggests that, consistent with prior results [4] on an ancient amber material, theories that predict a divergence of time-scales at a finite temperature are not consistent with the present upper bound results. Rather it appears that there is a strong deviation of the response from, e.g., WLF behavior, towards an Arrhenius-like response, albeit with a high activation energy. [1] G.B. McKenna and S.L. Simon, "50th Anniversary Perspective: Challenges in the Dynamics and Kinetics of Glass-Forming Polymers," Macromolecules, 50, 6333-6361 (2017).[2] H. Yoon, Y.P. Koh, S.L. Simon and G.B. McKenna, "An Ultra-Stable Polymeric Glass: Amorphous Fluoropolymer with Extreme Fictive Temperature Reduction by Vacuum Pyrolysis," Macromolecules, 50, 4562-4574 (2017).[3] C.P. Royall, F. Turci, S. Tatsumi, J. Russo and J. Robinson, "The race to the bottom: approaching the ideal glass?" arXiv:171104739v1 [cond-mat.soft] 13 Nov 2017.[4] J. Zhao, S.L. Simon, G. B. McKenna*, "Using 20-million-year-old amber to test the super-Arrhenius behavior of glass-forming systems," Nature Communications, 4, 1783-1 - 1783-6 (2013).

Thermal Conductivity Enhancement Through Stretching Of Polyethylene-Graphene Nanocomposites
Brian Grady, May 2018

The effect of simultaneous alignment of polyethylene (PE) lamellae and graphene nanoplatelets (GnP) on thermal conductivity of PE-GnP nanocomposites is investigated. Such alignment is achieved by subjecting the composite to mechanical strain. Alignment of PE lamellae is quantified using wide-angle X-ray scattering measurements while graphene nanoplatelet alignment is quantified via polarized Raman spectroscopy. Measurements reveal that thermal conductivity (k) of the composite increases at a faster rate with applied strain compared to pure PE pointing to the beneficial effect of GNP alignment on k enhancement. At the maximum applied strain of 400% and using 10 wt% GnPs, a composite thermal conductivity of 5.9 W/mK is achieved representing an enhancement of ~12-fold over the unoriented pure polymer (k~0.5 W/mK), a ~4-fold increase over the unstretched filled polymer (1.5 W/mK) and a ~1.75-fold increase over the unfilled oriented polymer (3.5 W/mK)

Effect Of Resin Selection On Pore Formation Of Polyethylene Films
Wenyi Huang, May 2018

This paper reports the importance of resin selection on the pore formation of semicrystalline homopolymer polyethylene (PE) films by cold stretching at room temperature and the subsequent hot stretching at an elevated temperature. Five different PE resins with various crystallinities and molecular weights were evaluated by using differential scanning calorimetry (DSC), conventional gel permeation chromatography (GPC), light-scattering GPC, and X-ray techniques. Mercury porosimetry was employed to characterize the pore structure of PE porous films, and water vapor transmission rate (WVTR) was used to determine the breathability of these porous films. The result show that high crystallinity (> 0.96 g/cm3), high molecular weight distribution (Mw/Mn > 6) and high z-average molecular weight Mz (> 500,000) of PE resins are critical for the pore formation in PE films. The WVTR value of PE porous films can be as high as 345 g•mil /(100 inch2•day).

Melt-Mastication Of Isotactic Polypropylene For Improved Thermal And Physical Properties
Brian Cromer, May 2018

A new polymer processing technique called Melt-Mastication (MM) is presented as a useful method to fabricate isotactic polypropylene (iPP) with improved thermal and mechanical properties. Melt-Mastication is a low temperature mixing technique that subjects molten iPP to chaotic flow at temperatures between the melting and crystallization transitions thereby promoting flow induced crystallization. The resulting iPP assumes an unusual morphology that is highly crystalline (57% crystal volume fraction), melts at a temperature 10.3 K higher than conventionally processed iPP, and demonstrates melt memory after annealing at 200 °C. The crystal morphology by polarized optical microscopy and atomic force microscopy appears to be comprised of largely disorganized lamellae, with possible ordering in local regions. Melt-Masticated iPP demonstrates greatly improved compressive modulus (+77%) and strength (+40%). The enhanced thermal and mechanical properties are attributed to aspects of the crystal morphology produced by MM.

Numerical Modelling Of Complex Parison And Sheet Formation In Blow Molding Processes Using Blowview Software
zohir benrabah, May 2018

Z. Benrabah and Anna BardettiNational Research Council Canada Automotive and Surface Transportation Research Center75 de Mortagne Blvd., Boucherville, QC J4B 6Y4, CanadaE-mails: zohir.benrabah@cnrc-nrc.gc.ca; anna.bardetti@cnrc-nrc.gc.caABSTRACT: BlowView is an engineering 2.5D finite element simulation software, developed at NRC, dedicated to simulate conventional extrusion blow molding, twin-sheet extrusion blow molding, stretch blow molding and thermoforming processes. This versatile blow molding simulation software is highly automated, flexible and user-friendly, yet allows users in-depth analysis capabilities for a wide range of materials, including optimization and permeability. Extrusion blow molding, and twin-sheet extrusion blow molding, are extensively used in manufacturing automotive plastic fuel tanks (PFT). These processes consist of three main phases: parison/sheet formation, inflation and part cooling and solidification. The parison/sheet formation is the most critical stage, as the final dimensions and mechanical performance of the PFT is directly related to the initial extrudate shape, which often requires the use of advanced die shaping technologies such as: Vertical Wall Distribution System (VWDS), Partial Wall Distribution System (PWDS), Die Slide Motion (DSM), and/or a combination of all three. These technologies are all available in the BlowView software, and can be handled simultaniously and synchronized with the machine programming points. In order to predict the extrusion with sag and swell, BlowView uses a hybrid approach that couples fluid mechanics to represent the die flow, with solid mechanics to represent the parison/sheet behavior outside the die, and a phenomenological swell model to capture the die geometry effect. This approach permits avoiding instability issues encountered by traditional fluid mechanics, especially at high Weissenberg numbers. After extrusion, the parison/sheet inflation is predicted tacking into account all mold components and their respective position and displacements. The modelling capabilities of NRC’s BlowView software will be presented based on using an industrial case study of a PFT. Permeability and optimization results will be also illustrated.

Analysis of Newly-Developed Textured PTFE Gaskets Subjected to Creep Relaxation
Ali Gordon, May 2018

The ability of a gasket to maintain sealability over a long period of time is the primary consideration for pressure vessel and piping designers. While service conditions such as temperature, internal pressure, gasket stress, and the caustic nature of the transport media are all important parameters, factors such as the gasket material, gasket dimensions, and flange torque procedure have generally been viewed as the most influential. Viscoelastic gaskets are attractive as intermediate layers between bolted flanges because they conform to the inherent imperfections between mating flange faces. They display time-sensitive relaxation responses over the long term. Next generation gaskets, termed EPX and manufactured by Garlock, have been designed with a dual-face, raised honeycomb pattern to confer more rapid stabilization compared to existing non-textured products. Historically, a re-torque is conducted at approximately 24 hours after initial torqueing. The consequence of the secondary load is a significant boost in the load retention response, especially for more compliant materials. Preliminary studies reveal that the viscoelastic properties exhibited by ceramic-filled PTFE materials can achieve a nearly identical post-re-torque response with a one hour dwell in place of the day-long dwell. The gaskets having a textured-style (i.e., EPX), however, were found to require no re-torque whatsoever. Gasket efficiency, %, defined in earlier studies, is used to measure both stress relaxation and load carrying capability of gaskets. A design of experiments (DoE) approach is applied to characterize the factors that influence load relaxation response of the both candidate (EPX) and existing (Legacy) gasket styles. Experimental data are used to develop modeling constants associated with the Burger viscoelasticity model. With the use of finite element modeling, stress distributions within the gasket are revealed. The collection of efficiency measurement methods, approach to re-torque optimization, and modeling convey a novel framework that designers can invoke to facilitate improved flange performance.

SPE-Inspiring Plastics Professionals

© 2024 SPE-Inspiring Plastics Professionals.
All rights reserved.

84 countries and 60k+ stakeholders strong, SPE unites plastics professionals worldwide – helping them succeed and strengthening their skills through networking, events, training, and knowledge sharing.

No matter where you work in the plastics industry value chain-whether you're a scientist, engineer, technical personnel or a senior executive-nor what your background is, education, gender, culture or age-we are here to serve you.

Our members needs are our passion. We work hard so that we can ensure that everyone has the tools necessary to meet her or his personal & professional goals.

Contact Us | Sitemap | Data Privacy & Terms of Use



SPE US Office
83 Wooster Heights Road, Suite 125
Danbury, CT 06810
P +1 203.740.5400

SPE Australia/New Zealand
More Information

SPE Europe
Serskampsteenweg 135A
9230 Wetteren, Belgium
P +32 498 85 07 32

SPE India
More Information

SPE Middle East
More Information

3Dnatives Europe
157 Boulevard Macdonald
75017, Paris, France
More Information

Powered By SPE

SPE-Inspiring Plastics Professionals

SPE-Inspiring Plastics Professionals

SPE ImplementAM

SPE-Inspiring Plastics Professionals

SPE-Inspiring Plastics Professionals

SPE-Inspiring Plastics Professionals

  Welcome Page

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net