SPE Library

The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 

Search SPE Library
After Date: (mm/dd/yy)  
Sort By:   Date Added  ▼  |  Publication Date  ▼  |  Title  ▼  |  Author  ▼
= Members Only
Conference Proceedings
A Novel Design Of Functionalized Organo-Modified Siloxanes For Surface Treatment Of Particles And Fillers
Ido Offenbach, May 2018
Fillers are widely used in thermoplastic polymers for cost reduction, enhancement of mechanical properties, enhancement of flame retardant performance, and more. Talc, ATH, MDH, calcium carbonate, glass fiber, aluminium oxide, and melamine cyanurate are examples of such common fillers. Because these fillers can come in different sizes and shapes, some can be comparatively difficult to disperse in the polymer matrix. This can lead to agglomerates of the fillers, which can result in high stiffness and low toughness of the final products. One way to improve the dispersion of fillers is using surface treatment additives. Evonik is one of the world leaders in specialty chemicals. Interface and Performance is a division of Evonik that specializes in developing additives for the polymer market. One of their recent developments is surface treatment additives for the fillers market, which behave as compatibilizers between fillers and polymer (thermoplastic and thermoset) matrixes. These surface treatment additives can be used by compounders as well as fillers manufacturers. Our newly developed Organo-Modified Siloxane (OMS) is an example of this technology. OMS technology is a unique polymeric substance that improves the compatibility of fillers with the polymer matrixes. In comparison to other surface treatment additives, OMS technology improves the hydrophobicity of the fillers’ surfaces. Our novel OMS surface treatment can also functionalize the surface of the fillers. Therefore, improvement in the mechanical performance of polyolefine and engineering resins can be achieved. This paper focuses on the TEGOPREN series, Evonik’s novel surface treatment additives. Specifically, this paper illustrates the benefit of using TEGOPREN in polymer compounds, and fillers which have been surface treated with TEGOPREN.
New Technology For Improving Halogen Free Flame Retardant Performance In Polymer Application
Ido Offenbach, May 2018
The recent health-risk and environmental concerns of using Halogen Flame Retardant (HFR) is driving companies to use Halogen Free Flame Retardant (HFFR) in their products. However, several challenges must be overcome to utilize HFFRs in polymer matrixes. Many of those challenges are related to the HFFR large dosing level, its low compatibility, and its poor dispersibility. These characteristics lead to impaired mechanical properties in the final product.Due to the health-risk and environmental concerns, Interface and Performance, which is a division of Evonik, has developed new technologies to enhance the properties of HFFR in polymer applications. Organo-Modified Siloxane (OMS) is an example of this technology. This technology is made up of unique polymeric substances that improve the compatibility of HFFR particles with polymer matrixes such as polyolefin and engineering polymers. Therefore, Combining OMS with HFFR improves UL 94 results at lower HFFR usage levels, mechanical properties of highly filled HFFR polymer compounds, melt flow indexes (improving the processing ability of highly filled HFFR compounds), amperage level use, and prevention of die drool. The OMS technology also improves the hydrophobicity of the compound, resulting in lower water absorption and better CTI values. This paper focuses on Evonik state-of-the-art OMS additives for filled HFFR (melamine cyanurate, phosphorus based materials, and others) in engineering polymer compounds (PBT, polyamide 6 and polyamide 6,6). These OMS additives can be used while compounding as well as in surface treated HFFR. The improvement of UL 94, CTI, mechanical properties, and melt flow indexes of filled HFFR in engineering polymer compounds will be demonstrated in this paper.
Tuball™ Single Wall Carbon Nanotubes For Thermoplastics
Maus Christian, May 2018
TUBALL™ SINGLE WALL CARBON NANOTUBES FOR THERMOPLASTICSOCSIAL has developed Single Wall Carbon Nanotubes (SWCNT) which are now available at industrial scale under TUBALL tradename. SWCNT’s are the ultimate material for conductivity: they are only one carbon atom thick with a diameter of around 2 nanometers and a length of 5-10 microns. Traditional fillers used to bring electrical conductivity in plastics typically need to be added at a high dosage. The unique morphological characteristics of SWCNT’s enable the creation of conductive networks at much lower dosages than those required by CB’s or MWCNT’s for example. As a result, it is now possible to achieve high electrical conductivities without compromising the mechanical properties and other characteristics of plastics.In order to enable the full development of their benefits the SWCNT’s need to be very well dispersed and distributed inside the polymer matrix. Two routes related to melt mixing are considered for the SWCNT’s incorporation.From one side the compounding of SWCNT powder into polymers is envisaged, general recommendations for a two-step compounding approach involving high specific mechanical energy input are summarized. On the other side, OCSIAL has started to develop several concentrates of SWCNT’s that are designed for compounding into specific thermoplastics. Those concentrates have typically a high dosage of SWCNT (up to 10%) and are based on fluid carrier systems. Proposed under the MATRIX tradename, they facilitate the dispersion and eliminate the SWCNT powder handling. Details about dilutions parameters and examples of performances that have been recently achieved by a selection of MATRIX grades are given. The results obtained in ABS, PC, PE rotomolding and PVC plastisols are covered and the specific benefits enabled by the implementation of SWCNT’s are discussed. From those practical cases it can be concluded that SWCNT’s can be incorporated into plastics by melt mixing and that the pre-dispersed SWCNT concentrates provide opportunities for differentiation through new product development.
A Novel Synergist For Halogen Free Flame Retardants
Amit Paul, May 2018
Paxymer AB has developed a novel halogen-free flame retardant system based on a multi-mechanistic approach including a unique synergist based on functional polymers. The challenge for formulators aiming to achieve halogen-free flame retardant performance is high dosage of additives resulting in low processing and mechanical properties and high prices. Paxymer's synergistic line of products address this. Enabling formulators to reduce their total amount of flame retardant additive using functional polymers gives benefits in all aforementioned aspects. For example: cost reductions of 10% with retained mechanical performance and improved processing performance. Paxymer's functional polymers eliminate dripping and can therefore act as a halogen free replacement of the commonly used PTFE. The company has also developed a analytical toolkit for characterisation and formulation prediction for halogen free flame retardants. The presentation will introduce the new line of products based on the company's 2016 patent submission. It will give some insight into the mode of action of the functional polymers, briefly outline the analytical approach of the toolkit and present a comparative case study between Paxymer containing products and a reference.
Tailor-Made Uhmwpe By High Shear Polymer Modification
Binay Patel, May 2018
The physical properties for commodity polyolefins have steadily improved over the course of the last 30 years. Some of these developments have been accomplished by optimizing structure-process-property relationships. For example, it is known that the longest of polymer chains can act as tie molecules between crystalline lamella, thereby increasing toughness but decreasing processability. It is also known that a balance of properties is often achieved by tuning a resin’s molecular weight distribution (MWD) for a given application. There have also been improvements in single site catalysts that can be used either within the same reactor or within reactor cascades to better control the resulting MWD. Unfortunately, these improvements have not translated to new ultra high molecular weight polyethylene (UHMWPE) materials. Improvements developed for commodity polyolefins do not translate to polymerization control at very high molecular weights. Zzyzx Polymers, LLC has developed a high shear polymer modification (HSPM) process for producing tailor-made UHMWPE thereby expanding the commercial utility of UHMWPE. This technical marketing presentation will cover an overview of HSPM technology and highlight various examples for tailoring UHMWPE for improved material performance, processability and for developing commercially viable UHMWPE-based blends.
New Generation HDPE For Pressurized Applications – Beyond PE100
Jonathan Rabiei Tabriz, May 2018
Polyethylene resins developed for pressure pipe applications has been existing in the market for close to 70 years. The development of resins has been moving forward with both technology advances and developing market requirements. This paper follows this development by introducing a new generation HDPE materials classified as PE112, as a step closer to the next major pressure class, PE125. SABIC® P6006AD pipe resin family, not only shows superior pressure resistance vs standard PE100 resins but also superior ESCR performance.The paper also presents a new class of HDPE resins with superior resistance to aggressive disinfectants, so called PE100RD. Performance data will be presented of SABIC® Vestolen A RELY 5933RD compared to standard PE100 resins under exposure to aggressive disinfecting media, such as Chlorine dioxide.
Wearable Insulin Pumps: Design And Everyday Use Performance Prediction
Hossam Metwally, May 2018
Wearable insulin pumps continuously deliver drugs to patients as they go about their daily lives. They benefit patients by providing a more continuous and controllable insulin delivery regimen as compared with (discrete) injections. Most designs utilize a flexible catheter to transport drug solution from the wearable device into the skin. One critical failure mode of these systems, especially in more active patients, is the formation of a permanent kink in the catheter tubing. The kink (or even a minor bend) reduces the cross-sectional area of the flow path, resulting in either a delay or complete interruption of the drug treatment. Sensors can be used to detect these obstructions as a rise in fluid pressure. This talk summarizes numerical modeling of catheter extrusion, the output of which is used to model catheter kinking and pressure-flow performance as a function of the degree of tube bending. This type of information is useful in developing sensitivity requirements for an integrated pressure sensor or in a control system for a wearable device.
Introducing Stride, A Collaborative Approach To Consulting And Contract R&D
Debora Massouda, May 2018
The Science, Technology and Research Institute of Delaware (STRIDE) was formed in 2016 after business restructuring in the chemical industry created a significant pool of available talent in the Wilmington, Delaware area. Operations began in 2017 with the help of a Longwood Foundation Grant. STRIDE provides R&D Services, including consulting and laboratory-based R&D, and we provide advice to start-up companies. STRIDE is a member-led organization, currently with over 100 members and growing. Most of our members are experienced industrial scientists and engineers. One of our strongest areas of expertise is polymer science and engineering, including polymerization, polymer processing and polymer characterization. Most of our experts have worked in a central research organization that required application of their expertise across numerous different industries. For example, members have experience with fibers, films, nonwovens, membranes, 3D printing, coatings, medical devices, composites, batteries, fuel cells, sensors, packaging and many more applications.Today’s presentation will tell stories about the surprising translation of learnings between different industries, and show how that has led to growth. STRIDE experts can work collaboratively with your team, bringing a different perspective, to help you grow.
Extending The Use And Properties Of Pvdf Polymer
Jason Pomante, May 2018
The World of PVDF Resin continues to evolve and change. PVDF is an excellent melt processible engineering resin with substantial chemical resistance, heat resistance, low permeation and many other wonderful properties. By using reinforcement additives in the neat resin, some basic properties can be enhanced such as heat deflection temperature, flame resistance properties, flexural strength amongst others while maintaining traditional PVDF properties such as UV resistance, chemical resistance and impact properties. This subject will be explored in detail to show advancements in PVDF technology along with some applications in the market. Also, PVDF is an excellent product for many stringent applications in wire and cable, aerospace and transportation due to the long lasting properties, however, some industries encourage weight reduction and cost savings. In an effort to deliver new technology to various market spaces, PVDF foaming technology is available to make very light weight articles in sensitive applications. Although past technology allowed for density reduction of around 20%, new technology has been developed allows PVDF to be continuously extrudable and obtain +60% weight reduction. Weight reduction can be obtain now that allows for PVDF to float! The advantages of this technology will be explored and described in order to not only show property enhancement but open new market space opportunities for PVDF. Both reinforced PVDF and low dentistry PVDF open up new opportunities that may allow cost savings to the end user.
Sabic Solutions For Personal Hygiene Applications: Industry Trends And Sabic Offerings, And Developments
Jelena Bozovic-Vukic, May 2018
Within SABIC we are further expanding our market facing approach in Petrochemicals business with new segments, and focus approach, in order to further intensify customer intimacy and to provide more focused solutions. Personal hygiene is one of the identified ‘segment’, which will enable SABIC to accelerate the pace of innovation, to respond to the personal hygiene industry challenges, and to follow the market trends by working in ever-closer collaboration with the customers. Increase in child population, growing female workforce, and rising per capita income are the key factors driving the demand for personal hygiene products across the globe. SABIC is focusing on delivering sustainable solutions that help to our customers to achieve their ambitions. SABIC® is already offering few commercial PP-fiber grades (MFR 10-35) for lightweight non-woven fabrics for personal hygiene applications. SABIC® PP grades in hygienic applications are1) utilized in existing extrusion equipment without significant modifications2) achieving excellent fiber thickness uniformity3) produced with phthalate free technology/catalysts, and such SABIC® PP fiber portfolio for hygienic non-woven products are available globally.SABIC technology team is further working on new developments to fulfill customer demands for advanced solutions in hygiene fabrics, and flexible packaging. Some of the developments and solutions offerings are to be elaborated during the conference, alike: soft-touch, melt-blown, breathable film solutions etc…SABIC is persistently pursuing innovative technologies to bring about broad-based improvements in the products offerings, while maintaining the momentum to meet changing market requirements.
Innovations In Plastic Welding Technologies: Hot Gas Welding
Anthony Verdesca, May 2018
The plastic industry and in particular the automotive sector is starting to embrace the use of new thermoplastic materials that present a challenge to conventional welding processes. This tendency combined with more rigorous requirements makes necessary the creation of new technologies that provide the quality and reliability expected from the end user. Hot gas welding is a process which combines two important elements: the non-contact aspect providing cleanliness in the weld and the ability to face tough-to-weld materials. With promising results on the initial stages and on going investigations to optimize the process, this technology opens the possibility to a new set of ideas to customers and adds a process to the wide range of plastic welding options that Bielomatik offers.
Thermoplastic Heatsink Solution For LED Luminaire
Remesh Kuzhikkali, May 2018
Thermal management of LED (Light Emitting Diode) luminaries is the key to success of LED lighting design. Managing the LED junction temperatures within the prescribed limits ensures the continued light output, improved life expectancy and lower power consumption per unit of light output. LED luminaires require certain performance criteria to be fulfilled while an all-plastic luminaire solution designed from an existing metal design. This includes thermal, mechanical, electrical, & optical aspects of its performance. A design methodology has been developed for the design plastic luminaires to meet thermal performance criteria. Computational methods are used to evaluate the thermal performance of heatsink designs and experimental methods to validate them.
Realistic Simulation Solutions Using Fea For Design, Optimization, And Fabrication Of Plastics
Arindam Chakraborty, May 2018
With the advent of efficient and robust numerical analysis techniques such as finite element analysis (FEA) and the increased computing power of today’s hardware solutions, it has become practical to simulate thermo-mechanical behaviors of plastics and rubbers that can capture the physical reality of such materials with high fidelity. Replicating physical behavior of highly complex and non-linear materials such as plastics have positioned FEA tools to create life like models that will behave like the real part or product. Such simulation can compare very well with the physical test. Therefore, using FEA techniques one can perform virtual testing to design plastic products and also can use simulation techniques to optimize design based on a mathematically robust approach instead of heuristic, experience based approach only. Using FEA one can address the needs of the product development lifecycle from concept through detailed design capturing realistic simulation of underlying complex physics.Employing accurate and robust non-linear solver that can handle complex CAD models one can accurately solve mechanical behavior involving very large deformations, contact interactions, complex loads and boundary conditions and material non-linear response such as hyper- and visco-elasticity and material anisotropy.Current presentation discusses the state-of-the-art of numerical techniques and tools including an array of material models that are available to perform realistic simulations of plastics and rubbers. Few relevant examples are described where FEA techniques are used for design and analysis of components made of plastics and rubbers. They include plastic bottles for consumer product goods, medical devices, pump seals, and assemblies made of plastics and metal frames.
New Developmental Copolyester
Katherine Hofmann, May 2018
Eastman Chemical Company has developed a new copolyester that combines the best of Spectar™ and Tritan™. The material has high heat resistance, strength, and stiffness as well as a number of other desirable characteristics. These include a low coefficient of friction, excellent ultrasonic welding, and great chemical resistance. The material is also excellent for injection molding, reheat stretch blow molding, injection stretch blow molding, extrusion blow molding, and extrusion. In addition, bio-content or recycled content can easily be incorporated. The characteristics of this new polymer enable molding and design freedom in a number of applications with the clean chemistry of copolyesters.
Facing Compounding Challenges Of The Future With The Ringextruder Re©
Erdmann Michael, May 2018
The RingExtruder consists of twelve coaxial screws which are arranged in an annulus. All adjacent screws are closely intermeshing and rotate with identical speed around their own axis. The mechanical agitation is very similar to the co-rotating, closely intermeshing twin screw extruders if only two screws are observed separately. The arrangement of the screws in a circle creates twelve meltpools. This leads to optimal conditions for an intensive axial and crosswise intermixing by mass transfer between the screw channels.The RingExtruder offers outstanding dispersion capabilities together with minimal introduction of mechanical energy. The screws of the RingExtruder have 12 intermeshing zones, which produce a flow pattern with a very high degree of elongation, which can be utilized for highly efficient and energy-saving dispersion. In consequence, improved product quality can be achieved and considerably lower product temperatures are obtained.Furthermore, the geometry of the RingExtruder offers a very high surface-to-volume ratio. Thus, a large heat transfer surface area is available. Special designs of the extruder barrels and the centre core allow for an extremely efficient cooling of the processing unit. Therefore, the RingExtruder allows to control material temperatures within defined limits in order to avoid degradation or the unwanted onset of pre-vulcanisation.Due to the splitting of the product flow into the twelve screw channels an enormous surface of the plasticized material with very small volumes is available. Additionally, the twelve intermeshing areas of the screws ensure a frequent material deflection and thus a high rate of surface renewal. This gives the RingExtruder an outstanding performance in degassing processes.The RingExtruder is used for various tasks in the field of compounding, reactive extrusion and devolatilization. Typical applications include the large-scale recycling of postconsumer PET, the continuous production of rubber compounds, the processing of shear-sensitive and/or highly filled materials as well as the manufacture of adhesives.
S-Max Series Screenless Granulator Technology
Bridgette McGann, May 2018
Producing consistent, high quality regrind is a key factor in many molding processes. Wittmann-Battenfeld’s screenless granulator technology is designed to process reinforced plastics and enhance your molding process resulting in fewer rejected parts and reduced costs.The new S-Max series of screenless granulators produce uniform, high quality regrind with a minimum of fines and elimination of longs. These low speed, high torque granulators are low in energy consumption, provide durable cutting tools for a longer life and less sharpening maintenance and come in a compact design to accommodate tight spaces. The S-Max series upgraded technology delivers an innovative solution for grinding hard, brittle and fiber glass filled materials.Primary topics:• Screenless granulator technology• Design advantages and application• New product launch: S-Max Series • Upgraded features, options and benefits
Energy Efficient Drying
DOUG HARDY, May 2018
Processing resin efficiently is a key factor to yielding a conforming product in any molding process. Energy savings is the focus of Wittmann-Battenfeld’s innovative solution to minimize energy costs while delivering the ideal amount of dried air for your process requirements. Wittmann Battenfeld’s Variable Frequency Drive drying systems with Process Flow Control Technology, has opened the doors to energy savings. Combining both Variable Frequency Drives and Flow Control Valves provides a complete, automatic central drying solution for efficient, redundant, and worry free resin processing. Primary topics (what the registrant will learn):The presentation/discussion will cover following topics:• Variable Frequency Driven Drying system design and benefits• Drying Hopper Flow control design and benefits• VFD and flow control as a redundant system• Dry air conveying system designs and benefits
Tww Micro (Tm) Extruder For 3D Printing
Timothy Womer, May 2018
A new product is patent pending which will allow Medium Area Additive Manufacturing users to be able to 3D print using industry standard pellets of any type. The new TWW Micro (TM) Extruder has be develope to overcome the problem of processing standard size pellets in small extruders that can plasticize throughput rates between 2 to 20 lb./hr. It also allows the user to extruder polymers such as carbon fiber-filled ABS, PP, PLA, PC and etc. This super small extruder which weighs less that 20 pounds will make it possible to extrude any type of resin that is available to the plastics industry at very low throughput rates needed for MAAM applications.
Elastic Recovery And Actuation In Polyolefin Thermoplastic Elastomers
Justin Barone, May 2018
Polyolefin elastomers (POEs) are a class of thermoplastic elastomer (TPE) that can be easily processed. POEs have broad applications from the automobile industry to the footwear industry, but for highly customizable materials the POEs must be altered on the microstructural scale. In this work, a systematic study of how thermal processing affected the ability of ethylene-octene random copolymers to store and dissipate applied strain energy was undertaken. Ethylene-octene copolymers with different degrees of crystallinity were compression molded and slow cooled, quench cooled, or annealed. Copolymer blends were mixed, varying the ratio of high crystallinity copolymer to low crystallinity copolymer. Tensile testing of the cooled samples showed that the crystallinity correlated to the elastic modulus and hysteresis behavior. The higher crystallinity samples exhibited higher hysteresis and higher modulus than the lower crystallinity samples. The blends were immiscible but exhibited physical behavior between the two components. Actuators were built by molding POE bilayers where one layer had higher elastic recovery than the other layer. Stretching and releasing the bilayer resulted in different extents of bending and twisting depending on the applied strain. Microstructural control will allow for the optimal design of elastomeric materials and actuators with anticipated properties.
From Recycled Tires To Plastic Parts: Micronized Recycled Rubbers In Thermoplasitc Polyolefins
Haikun Xu, May 2018
Micronized rubber powders (MRPs) have shown superior compatibility in TPOs and excellent elastomeric properties. However, it requires efforts to explore the use of MRPs in useful products and a few challenges need to be addressed. In this study, MRP-filled TPEs were compounded at various loading ratios and the effect of sizes of MRPs was investigated. In addition, the surface details of injection molded parts were studied and induction-heated molding were implemented to improve the surface finish for various applications. Finally, multiple conventional plastic processes were explored and injection-molded parts made out of MRP-filled compounds were demonstrated to discover more potential applications.

This item is only available to members

Click here to log in

If you are not currently a member,
you can click here to fill out a member application.

We're sorry, but your current web site security status does not grant you access to the resource you are attempting to view.

  Welcome Page

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net