SPE Library

The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 

Search SPE Library

Sort By:  Date Added   Publication Date   Title   Author

Conference Proceedings

Calculation of Melting Performance of Injection Molding Screws by an Easily Applicable Model
Natti S. Rao, Günter Schumacher, Nick R. Schott, Ray Edwards, May 2001

The plastication of solids in the reciprocating screw of an injection molding machine is a transient process, and consists of two phases. During the stationary phase of the screw, melting takes place mainly by conduction heat transfer from the barrel. The melting during the screw rotation phase of the molding cycle is similar to that of an extrusion screw, however the screw undergoes translation. Starting from the relationship for conduction melting and extending it to include a simplified model for the extrusion melting, a set of equations which can be easily solved for the solid bed profile in the reciprocating screw is derived. Using this extended model, simulations of the effect of the barrel temperature, screw speed, screw rotation time, screw geometry and resin properties on the melting performance of the screw are presented. Predictions of the model agree well with the experimental observations in practice. The easy applicability of the model is illustrated by worked-out examples.

New Developments in Plastics Packaging the next Ten Years
Françoise Pardos, May 2001

Packaging is the largest application of polymers, in all countries, at all levels of development, 30 to 40 % of total plastics consumption, boosted by very strong facts and trends. Past present and forecast figures show diversified plastics growth in packaging, and new competition between plastics. The narrow link of packaging with food products makes packaging a stronghold of resistance, even in recession. The fast development of emerging countries generates demand for improvement of the food supply and packaging; Research goes on, for smarter, simpler, thinner packaging, of higher performance and easier on the environment.

Waste Management of PET Bottles in Croatia
Mladen Šercer, Maja Rujnic-Sokele, May 2001

Waste management is gradually becoming a priority within an integrated approach to nature conservation. Croatia has taken a number of good steps during the recent years. The first life-cycle and economy analyses in Croatia were made for managing of glass waste in 1997, but no serious study of plastic waste was made until recently. Among all types of plastic waste, only PET-bottles are collected in Zagreb (within the OHO system - Croatian Recycling System), so it was logical to make the first life-cycle analysis of PET-bottle. The results have shown the evaluation of PET-bottles' impact on the environment and the critical points" of PET-recycling were pointed out."

Experimental Validation of a Mold Filling/Cooling Software
R. Morales, S. Villarroel, H. Andrade, H. Rojas, A. Sánchez, May 2001

With the aim to establish some guidelines in the use of injection molding simulation programs as a predictive tool when designing a mold, an experimental validation of an injection mold was performed. Amorphous and semicrystalline materials were injection molded, and their corresponding process windows were established. C-Mold software was employed to simulate the experimental conditions. It was found that the software temperature predictions agree very well with the experimental results, but pressure predictions do not. The material properties seem to be strongly influencing the simulation results. Filling and packing times could be extrapolated from the simulation, but shrinkage predictions should be considered carefully.

New Technology to Vary the Thickness of the Parison in Circumferential Direction during the Blow Molding Process
Heinz G. Gross, May 2001

The complexity of blow molded parts grows steadily. Accordingly the technology must keep space with the raised requirements of the market. Thus to improve the thickness distribution of complicated blow molded parts such as tanks for cars it becomes necessary to alter the thickness distribution of the parison not only in axial direction but also in circumferential direction. Encouraged by the success of the introduction of Membrane Dies for film and sheet extrusion the idea was born to design also dies with an extreme flexible outer wall for blow molding machines. This flexible wall can be locally deformed by adjusting screws which are located around the circumference of the die. The basic steps to reach this goal and the possibilities of the new technology are described.

Rapid Tooling and Plastics - Where the RT Industry Stands in 2001 on Better Alternative Tooling Methods
Barbara J. Arnold-Feret, May 2001

Rapid tooling (RT) has been surveyed, talked about, praised and condemned by users, promoters and bystanders since the development of alternative tooling methods debuted. However, RT processes are improving, with newer direct metal deposition and spray metal methods addressing concerns by plastic molders about size, durability, and molded materials. This paper outlines the state of RT industry for users already familiar with prototyping and RT. Setting the group of commercialized RT products which can be used in standard injection molding machines against P20 CNC produced tooling standards for density, cosmetics, thermal conductivity, cost and lead-time, feature definition, and others shows the evolving technology and the gaps that persist. By and large, the RT industry has been redefining acceptable boundaries for rapid tooling, and listening more to customer concerns. Several experimental technologies and limited use technologies exist that may be used to produce molded plastic parts, but are not available for placement on a conventional injection molding machine. Experimental and noncommercial technologies are not covered in this paper, and discussion is limited to three commercialized processes that show more commercial and mainstream acceptance by custom molders, KelTool™, LaserForm™, and DMD™.

Metallocene Plastomer Based Thermoplastic Olefin Compounds Designed for Roof Membrane Applications
N. Dharmarajan, T.C. Yu, D.K. Metzler, May 2001

This paper discusses the use of ethylene octene (EO) copolymers made with metallocene catalysts in thermoplastic polyolefin (TPO) compounds designed for single-ply roofing. The performance of two neat EO copolymers is first compared with a polypropylene (PP) based Reactor TPO (RTPO) currently used in single-ply roofing. The more crystalline EO copolymer displays superior thermal and physical properties compared to RTPO. Formulations comprising the EO polymers were designed and optimized using mixture design of experiments. The optimal compounds contain about 50 % EO, 20 % PP and 30 % magnesium hydroxide (MH), a flame retardant additive.

Structure Performance of Thin-Wall Injection Molded Parts
S.C. Chen, W.R. Jong, Y.P. Chang, Y. Kang, Y. Kang, L.T. Huang, L.K. Yang, C.T. Chang, R.C. Luo, May 2001

Influence of processing conditions, part thickness and residual stress on the structure performance of 3C thin-wall injection molded parts were investigated. Thin-wall tensile test specimens were molded. A computer dictionary (CD), with 1.6 mm thick housings, was also used for structure evaluation of bending strength and drop-impact performance. It was found that as part becomes thinner, residual stress becomes higher and affects both part tensile strength and weld-line strength more significantly. Higher melt temperature and mold temperature, lower packing pressure and faster injection speed would reduce residual stresses, increase weld-line strength and improve associated properties. When CD housings were redesigned to 1 mm thick keeping sidewall 1.6 mm, both its bending strength and drop-impact performance were only slightly decreased.

Effect of Different Nucleating Agents on the Degassing Conditions as Measured by Ultrasonic Sensors
Jacques Tatibouët, Abdelhadi Sahnoune, André Hamel, Richard Gendron, May 2001

Ultra sonic sensors have proven to provide valuable information on the thermoplastic foaming process in polymers. Measurement of the attenuation of the ultrasonic signal can be easily related to the nucleation process, i.e. the onset of bubble formation in the foam matrix. The ultrasonic sensors can be installed in-line, on the extrusion line, and thus allow direct access to the prevailing processing conditions. In this work, the degassing conditions (pressure and temperature) of a mixture of polystyrene and a physical blowing agent, HCFC 142b, are determined for two different nucleating agents. The resulting cellular structure of the extruded foams is correlated to the degassing conditions determined by the ultrasounds. The results are discussed in light of other observations on the nucleation process.

Falling Weight Impact Testing Analysis of Rotationally Moulded Polyethylene
J. Kissick, X. Wang, E. Harkin-Jones, R.J. Crawford, May 2001

The falling weight impact test is a common method to evaluate mechanical properties of rotomoulded parts. This is because the resistance to impact of rotationally moulded articles is very sensitive to variations in resin, processing conditions, etc. More information could be obtained from an instrumented falling weight impact test, such as impact force/time and failure mode variation. In this work, these relationships are studied. Also, the effects of material properties, processing parameters, such as temperature and introducing pressure, are discussed.

Investigations for the Numerical Determination of the TTT-Diagram for Unsaturated Polyester Resin Systems
Marco Wacker, Gottfried W. Ehrenstein, May 2001

During cure of a thermoset resin, the material exhibits three distinct phases: liquid, gel, and solid. Each of these material states is marked by dramatic changes in the thermomechanical properties of the resin. The glass transition temperature and the elastic modulus of the thermoset materials are two examples of the material properties that are of great interest to processors in the thermoset resin industry. The ability to predict the progression can give insight into the performance and optimisation of processing methods for thermoset resins.

Prediction of the Impact Behavior of Injection Molded Plates
J.C. Viana, A.M. Cunha, N. Billon, May 2001

The falling-weight impact test in injection-molded plates is simulated in a finite element based computer code (FORGE2®). The effect of processing is introduced on the material constitutive model through the dependence of its coefficients upon the thermomechanical indices computed from mold filling simulations. Two plate-like moldings (a box and lateral gated disk) were injected with arbitrary sets of processing conditions. In the impact simulations, two extreme conditions of contact between the impactor and the plates are considered: frictionless and adhesive contacts. The simulated force-deflection curves are compared with the experimental ones. Good agreements are obtained providing the different strain-rate sensitivities of the microstructural parameters are taken into account The results also evidence the role of the viscoelastic coefficient on the initial deformation stages. Moreover, the contact conditions have a strong effect on the mode of rupture of the plates and consequently on the maximum sustained strength levels.

Effect of Compounding Conditions on the Wood Flour/Polyethylene Composites in Twin-Screw Extruders
Yeh Wang, Hsun-C. Chan, Sun-M. Lai, Hsiao-F. Shen, Yao-K. Hsiao, May 2001

The compounding of wood flour filled polyethylene is discussed with reference to co-rotating twin-screw extruders from two manufacturers. An acrylic acid-grafted polyethylene copolymer was used as the compatibilizer in high-density polyethylene-wood flour composite system. Special consideration was given to the compounding of the heat- and shear-sensitive wood flour. The relevant screw configuration was found to consist of short mixing elements with low intensity of shearing. A suitable combination of processing variables, including screw rotation speed, throughput rate, and barrel temperatures, was necessary for limiting the thermal degradation and the darkening of the wood filler. However, tensile properties of the composites were not affected much.

Effectiveness of Functionalized Polyolefins as Compatibilizers for Polyethylene/Wood Flour Composites
Sun-M. Lai, Feng-C. Yeh, Yeh Wang, Hsun-C. Chan, Hsiao-F. Shen, Yao-K. Hsiao, May 2001

The effects of various types of compatibilizers on the mechanical properties of high-density polyethylene/wood flour (HDPE/WF) composite were investigated. Functionalized polyolefins such as maleated linear low-density polyethylene, polypropylene, and styrene-ethylene/butylene-styrene copolymer were incorporated to reduce the interfacial tension between polyethylene matrix and wood filler. It was found that LLDPE-g-MA gave maximum tensile and impact strength of the composite presumably due to better compatibility. Similar but less enhanced improvements in the mechanical properties, depending on the compatibilizer loading, were seen for SEBS-g-MA system. Whereas, notched impact strength decreased with increasing loadings of PP-g-MA. A scanning electron microscopy study was employed to reveal the interfacial region and confirm these findings.

Separability Criteria for Entangled Polystyrene Solutions Using Flow Birefringence
M.T. Islam, L.A. Archer, May 2001

Step shear strain experiments were performed using several entangled polystyrene (PS) solutions to investigate factorability requirements of the non-linear relaxation modulus, G(t,?) [? ?12(t,?)/?]. A phase modulated flow birefringence apparatus was used to measure optical equivalents of shear stress (n12) and first normal stress difference (n11-n22) in a plane-Couette shear flow geometry. For all polymers studied, a separability time ?k was identified beyond which the optical equivalent of G(t,?) [B(t,?) ? n12/? ? G(t,?)×C] could be factorized into separate strain and time dependent functions. In every case, ?k exceeded longest Rouse relaxation time ?R and found to be of the order of terminal relaxation time ?d0. These findings could help explain previous experimental observations of delayed factorability and non-factorable relaxation moduli in well entangled polymer solutions and melts.

Simulating the Cohesive Properties of Ultem and Related Molecules
B.E. Eichinger, David Rigby, Judith Stein, May 2001

The cohesive properties of many engineering plastics are difficult to determine experimentally, as the polymers are frequently insoluble, have high Tg's, and are sometimes poorly characterized. Molecular modeling can provide useful information of higher quality than might be obtained by other methods for these difficult polymers. A series of simulations on Ultem® and related molecules have been performed to evaluate the cohesive energy density of the polymer and determine interfacial interactions with small molecules. These methods yield a value near 22.0(MPa)½ for the solubility parameter of the polymer, and it is shown that benzyl alcohol has the most favorable interactions.

Modeling the Melting Process of Polymer Pellets Caused by Friction
K.L. Yung, Yan Xu, Francis Lau, May 2001

The melting of polymer caused by friction before the solid plug is formed is an important phenomenon in the plastic injection process. To analyze the melting process caused by solid particles sliding against the bellow, an analytical method that can simulate behavior of each particle during the calculation should be used. Particle element numerical method is hence adopted in the analysis for this research to take into consideration the behavior of each particle. In the review of literatures in this area, no publication has reported success in the analysis of the transient close-contact melting process caused by friction. In this paper an analytical expression for the transient melting process is derived by assuming friction against flight and screw as friction against adiabatic walls.

Modelling of the Effect of Slip in Plug-Assisted Thermoforming
D. Laroche, P. Collins, P. Martin, May 2001

In plug-assisted thermoforming, the interaction between the sheet and the plug strongly affects the final part thickness distribution due to sheet cooling and slippage on the plug surface. The type of plug material and surface finish has to be carefully selected. The amount of slip on the plug surface depends on the rheology of the polymer sheet and on the friction coefficient. Both properties are temperature dependent. In this work a non-isothermal friction coefficient model is evaluated for its potential in predicting the amount of slip in plug-assisted thermoforming. The model has been implemented in a finite element analysis software for predicting the consecutive steps of the thermoforming process. The model has been applied to simulate industrial scale plug-assisted thermoforming and the predictions are compared to experimental measurements.

Polyurethane Coatings Based on Soybean Oil Prepolymers and Crosslinkers
I. Javni, V. Karajkov, Z. Petrovic, May 2001

Four series of coatings were prepared by using a soybean oil based isocyanate prepolymer and two types of the soybean oil based polyols as the crosslinkers. Water (humidity from the air ) was also used as a co-crosslinker. The isocyanate prepolymer and the polyols were prepared according to the original, proprietary methods. Varying the hydroxyl number of the polyol and polyol/ water ratio in the crosslinker varied the structure and properties of the coatings. The coatings were tested for hardness, elasticity (bending test), scratch resistance and adhesion. DSC, TGA, TMA, tensile strength and swelling were used to assess the glass transition and crosslinking density of the films.

Generation of Thermotropic Liquid Crystalline Polymer/Thermoplastic Polymer Strands for Producing Wholly Thermoplastic Composite Materials
Jianhua Huang, Donald G. Baird, Wei Huang, May 2001

Thermotropic liquid crystalline polymer (TLCP) reinforced thermoplastic polymer (TP) strands were spun and used in injection molding to form wholly thermoplastic composite materials. While keeping the strand size suitable for injection molding, effort was made to increase the orientation and aspect ratio of the TLCP fibril that would remain in the final product as reinforcement. The pelletized strand can be injection molded without disturbing the TLCP reinforcing fibrils. The samples have similar mechanical properties, lower density and smoother surfaces compared with glass fiber reinforced samples.

  Welcome Page

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net