SPE Library

The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 

Search SPE Library

Sort By:  Date Added   Publication Date   Title   Author

Conference Proceedings

Biodegradable Plasticizers for Polylactic Acid
Stephen McCarthy, Xu Song, May 2001

Poly(lactic acid) [PLA] is a well known biodegradable polymer which has been used in drug delivery systems, surgical repair systems such as sutures and bone fracture fixation pins and screws. PLA is biocompatible, has a high tensile strength, and has a high elastic modulus[1,2]. However, one drawback of PLA is the low elongation at break due to a brittle fracture while under tensile and bending loads. The elongation at break of PLA is typically 3 - 5 percent[1]. The reason for this brittle behavior is due to physical aging which occurs during storage at room temperature and has been studied extensively.[3] Plasticization is a common technique used to increase the ductility of a brittle polymer. In the case of PLA a suitable plasticizer must be miscible with PLA so as to decrease the glass transition temperature, as well as be biodegradable and nontoxic so as to provide a useful biodegradable blend. The advantages of the plasticization are low cost, ease of processing, and the ability to alter the properties of the blends by varying the amount of plasticizer. Use of a functionalized plasticizer can be more desirable such that a chemical bond is formed with the PLA polymer thereby preventing loss of the plasticizer through migration.

An Assessment of Dynamic Feed Control in Modular Tooling
J.F. Reilly, M. Doyle, D.O. Kazmer, May 2001

An experimental investigation of the inter-cavity dependencies of a modular tool using Dynamic Feed control is presented. The results showed that part weight and overall part dimension are controlled by the individual command pressure to each cavity and the material's melt temperature. The weight and dimensions of a particular cavity appear independent of the control pressures set to fill the other cavity inserts. This was demonstrated to the extent that weight and dimension showed independence from a deliberate short shot condition in the hardest to fill part. There may be a minor synergistic effect of adjacent cavity pressure and the shorting part but this would need to be confirmed with additional experimentation. Once initially stabilized both traditional machine velocity control and Dynamic Feed weight variations were in the range of +/- 0.025% or less.

Effects of Antiblocking Agents on Polyethylene Crystallization in Bulk and in Dilute Solution
Jim C. Huang, J.W. Teh, May 2001

The effects of antiblocking agents on the crystallization process of linear-low density polyethylene were investigated in dilute solution and in bulk. It was found that the type of antiblock has a more profound influence on crystallization than does macromolecular architecture. Silica was not found to have appreciable influence on the crystallization process either in bulk or in dilute solution. Talc, however, affected the crystallization process in both phases: in dilute solution, it decreased the apparent homopolymer fraction in TREF, and in bulk, it elevated the onset of crystallization and reduced the rate of nucleation, as monitored by DSC and DMA.

Re-Engineering of an Epoxy Matrix for Composite Water Ski Fabrication
Eric N. Gilbert, Brian S. Hayes, James C. Seferis, May 2001

Changes in resin chemistry have a significant effect on the manufacturing parameters and mechanical properties of composite systems. A customized resin was developed for the fabrication of a water ski, which conformed to the initial manufacturing parameters of the commercial resin system. The curing properties of the resins were investigated and laminates were taken from skis to compare resistance to high temperature deformation using stress relaxation experiments. Also, real-time strain measurement systems were built and tested on skis made with both resins. Results showed that the stiffness increased under a 3-point bending load and stiffness was maintained at higher temperatures with the customized resin system.

Investigation of Non-Thermal Effects Produced by Ultrasonic Heating on Curing of Two-Part Epoxy Adhesive
Kin Ming Kwan, Avraham Benatar, May 2001

Rapid curing of structural adhesives by ultrasonic heating has been demonstrated successfully in recent work. Therefore, it is important to examine whether ultrasound would induce non-thermal effects that accelerate the reaction rate of the adhesive. In this paper, Differential Scanning Calorimeter was used to carry out thermal analysis of the reaction kinetics of a two-part structural epoxy adhesive. A chemical model based on a four-parametric semi-empirical equation was developed to distinguish the non-thermal effects from ultrasonic vibration from the thermal effects resulting from ultrasonic heating. It was found that the non-thermal effects was more significant at the beginning of the curing process but it gradually diminished as the heating time was increased. The conversion of the epoxy adhesive produced by ultrasonic curing at 50 seconds was almost three times higher than that obtained by thermal heating.

Modeling of Ultrasonic Forced Wetting Process by Dimensional Analysis
Kin Ming Kwan, Avraham Benatar, May 2001

Wetting of liquids on solid surfaces is very important for many applications including adhesive bonding. Ultrasonic forced wetting has been shown to reduce the contact angle of liquids on solid surface. The application of hydrodynamic analysis to model the process is difficult because of the well-known stress singularity that arises at the liquid/solid contact line. In this paper, dimensional analysis was utilized to establish a semi-empirical dimensionless equation for the prediction of the ultrasonic forced wetting process. Experimental data of dynamic contact angles of three liquids vibrated at different frequencies and amplitudes were produced. By correlating the dynamic contact angle with liquid properties, geometric parameters, ultrasonic vibration parameters, gravity, and thermal effects caused by viscous heating, it was shown that a dimensionless equation can be developed to predict the dynamic contact angle of liquids under ultrasonic forced wetting.

Physical Modeling of Elastomer Extrusion Using the Visioplasticity Method
David C. Angstadt, Wojciech Z. Misiolek, May 2001

The visioplastic method is often used to model material flow for the deformation of metals. The method provides qualitative and quantitative data on material flow such as strain, strain rate and velocity throughout the flow regime. Data obtained is used to evaluate die design, troubleshoot processing problems or evaluate results of computer modeling software. The present study applies this method to the extrusion of elastomeric profiles. An advantage with elastomers is that the actual polymer being studied can be modeled directly. A general discussion of the visioplastic method is provided along with results from the evaluation of selected die geometries.

Melt Drawing of LDPE/Thermoplastic Starch Blends
F.J. Rodriguez-Gonzalez, N. Virgilio, B.A. Ramsay, B.D. Favis, May 2001

In this work, the influence of thermoplastic starch (TPS) composition, processing conditions and the hot stretch ratio (HSR) on the morphology of LDPE/TPS blends were studied. Blends were prepared in one- and two-step processes. Both series of blends were drawn at different HSR at the exit of the die. The morphology of blends was quantified using a novel methodology, which allows a more precise evaluation of the particle volume. Blends prepared in the one-step process showed increased levels of anisotropy as a consequence of a combination of coalescence and particle deformation during melt drawing. Conversely, TPS particles of reprocessed blends showed no-coalescence and a low degree of deformation.

Evaluation of New Insulation Materials for Heater Bands
Amit Agarwal, Carol M.F. Barry, Nick R. Schott, May 2001

The performance of standard mica heater bands, mineral heater bands, and heater bands containing new inorganic insulation materials were compared. The overall performance of the inorganic and mineral insulation was far better than that of standard mica insulation. Inorganic-insulated heater bands generally provided faster response, better stability, and lower power consumption than a standard mineral-filled band. Although high water retention in experimental binders led to premature heater band failure, optimized inorganic binders gave better high temperature performance than organic binders. Finally, a combination of inorganic insulating materials produced the best overall results.

A Predictive Melting Model for Polymer Particulates in Co-Rotating Twin Screw Extruders
Costas G. Gogos, Bainian Qian, May 2001

A predictive melting model for polymer particulates in co-rotating twin screw extruders (Co-TSEs) is proposed. The proposed model starts with the solids conveying section where discrete mechanics is used to describe the movement and deformation of solid particulate assemblies. The interparticle forces can be estimated based on the screw geometry, processing conditions, and material properties. These forces are the sources of two important melting mechanisms: the Frictional Energy Dissipation (FED) and the Plastic Energy Dissipation (PED). The model also considers the role of barrel heating in creating a layer of preformed melt". The existence of preformed melt changes the conveying properties of solid particulates dramatically. Finally the model considers the important heat generating term the Viscous Energy Dissipation (VED) whose onset coincides with the creation of a fraction of molten polymer generated by any of the above mechanisms."

Quantification of Calibration Drift for the TC Probe Thermal Effusivity and Conductivity Instrument
Christina Chandler, Nancy Mathis, May 2001

The Pyris TC Probe requires calibration with characterized standards to relate instrument response to effusivity and/or thermal conductivity. This study was under taken to determine the magnitude of any drift in calibration that occurred over time. Drift could occur due to uptake of water in the sensor's insulation or surface wear. Three calibration standards of known effusivity values were used to calibrate the instrument at 4 test times from 6 to 30 seconds. Several standards were tested during a period of 64 days with each of the calibration files. Of the 120 tests conducted, only 2 results varied more than 4%, indicating excellent stability.

Large, Structural, Class A" Thermoplastic Automotive Part Production without Painting"
Stephen McCarthy, Qing Guan, Shawn McCarthy, Malar Rohith Shetty, Thomas Ellison, Arthur Delusky, May 2001

The Valyi surface finishing/compression molding process (SFC) has successfully been used to produce large structural panels with Class A finishing under low pressure. The material used in the SFC process must meet certain performance requirements in order to fully exploit the capability of the process. This paper compares the mechanical properties and rheological properties of short and long glass and carbon fiber reinforced materials. The Long fiber reinforced PP resins show enhanced stiffness and impact strength. Degradation of surface appearance due to long fiber read through is an issue to be addressed in future work.

A New Method for Determining the Thermal Conductivity of Polymeric Samples through the Melt
Craig Dixon, May 2001

Understanding thermal behavior of molten polymers is critical to many different resin molding processes. The objective of this study was to investigate the adaptation of the Transient Plane Source (TPS) thermal analysis method for evaluating polymer feedstock raw materials in pellet form through the melt. A new sample holder was designed to accommodate the logistics of the experiment. Two sets of polymer raw materials were evaluated, one a random copolymer polypropylene with no filler and the other a polypropylene backbone modified with rubbers and mineral fillers. Thermal conductivity results for each sample were obtained at five temperatures, 250°C, 200°C, 150°C, 100°C and 50°C. Each sample was tested in triplicate to identify the precision of the TPS technique under each condition. The results of this study were correlated to thermal conductivity results obtained on the same samples by ASTM testing method D5930-97[1], using the transient line-source (TLS) technique.

Plastic Energy Dissipation (PED) a Major Contributor to Melting of Polymers in Polymer Compounding Equipment
Bainian Qian, Costas G. Gogos, May 2001

Polymer processing equipment, batch or continuous, provides for some or all of the following mechanisms for the heating and melting of polymer particulates: Conductive Heating, Interparticle Friction Energy Dissipation (FED), Plastic Energy Dissipation from each deforming solid particulate (PED) and Viscous Energy Dissipation (VED) arising from the flow of the viscous polymer melts. Experimental evidence generated in our laboratories where PED was evaluated with individual solid polymer cylindrical samples and inside compounding equipment, such as Co-TSEs, indicates that PED arising from the irreversible deformation applied by the compounding equipment on solid particulates is often orders higher in magnitude than other heating/melting mechanisms.

Microfoams of Polycarbonate Have High Impact Properties
Andrzej Bledzki, Hendrik Kirschling, Christoph Barth, May 2001

Customary polycarbonate (PC) with a relatively small amount of polypropylene (PP) between 0,5 and 5 weight-% has been processed into blends and determined in extensive tests. An increase in low-temperature impact strength was shown: the impact resistance values of pure PC determined in Izod-tests could be improved by the factor 5 by adding 3 weight-% of PP. As a reason for the extremely high impact properties an special morphology of this group of blends could be stated. Because of the incompatibility of both blend partners in connection with remarkably different thermal dilatation factors concerning a common processing, fine-dispersed PP particles are created in the PC-matrix, which are surrounded by cavities. If favourable geometrical conditions of this cavity morphology (diameters, distances and so on) are present, shear mechanisms of deformation and stop processes of cracks are facilitated, which restrain or decelerate a crack propagation at a sudden load.

A Continuum Model for Flow Induced Crystallization in Polymers
I.J. Rao, K.R. Rajagopal, May 2001

In this paper, we present a new continuum framework to formulate models to study flow induced crystallization in polymers. The models are developed in a general thermo-mechanical setting and are able to incorporate the main features of the crystallization process. A consistent framework is developed to model the transition from a fluid like behavior to a solid like behavior. The anisotropy of the crystalline phase is included in the model and depends on the deformation in the melt. Particular models are generated by choosing specific forms for the internal energy, entropy and the rate of dissipation. Equations governing the evolution of the natural configurations and the rate of crystallization are obtained by maximizing the rate of dissipation. The initiation criterion, marking the onset of crystallization, arises naturally in this setting in terms of the thermodynamic functions. The model is used to simulate bi-axial extension in a polymer film that is undergoing crystallization.

New Advances in Torque Rheometry
Andrew Yacykewych, May 2001

The torque rheometer has been an essential instrument for a wide spectrum of research and development and quality control testing laboratories throughout the years. The torque rheometer has evolved just as quickly as advances in material chemistry. Highly sophisticated software and hardware technologies have now been introduced to better serve the needs of a modern laboratory. New challenges in such areas as plastics recycling and environmentally friendly fillers for plastics are some of the needs being met by using this multifunctional instrument. This paper intends to discuss how these changes have made the instrument more relevant than ever.

On the Inherent Stability of a Dynamic, Pressure Controlled Injection Molding Process to Material Variations
J.F. Reilly, May 2001

Dynamic feed is the injection molding process whereby the machine's polymeric flow is attenuated by a series of independent valves that are placed in a hot runner manifold just prior to each cavities entry gate. Each valve is controlled dynamically, in real time, to follow a pre-programmed pressure profile using feedback from a pressure transducer located downstream. The advantages of having control over each cavity (or open/close sequencing along with pressure profiling) are many. Parts of widely varying fill needs can each have a tailor made pressure profile specific to the needs of that particular part geometry. Strikingly dissimilar parts can be made in a single shot that would not be possible on a conventionally equipped machine. Watkins and Hume have discussed the primary advantages of this technology previously, they focused on the particular advantages of using the technique with modular tooling1. Kazmer discussed the process in detail5. Of concern in this work is the inherent stability of the dynamic feed process and the apparent potential for increased process variation due to anticipated material variations2.

The Role of Melt Dynamics in Shear-Enhanced Crystallization of Isotactic Polypropylene
James P. Oberhauser, Derek W. Thurman, Julie A. Kornfield, May 2001

Processing flows are known to accelerate polymer crystallization kinetics, strongly altering the orientation distribution of the crystallites and producing dramatic changes in material properties. Our research probes the molecular level processes that give rise to these effects. To clarify the role of macromolecular relaxation, we investigate the effects of shear history on the crystallization of isotactic polypropylenes. A unique apparatus enables us to subject a subcooled melt to precisely controlled intervals of shear at stress levels similar to those encountered in industrial processes.(1) Brief intervals of shear enhance the rate of subsequent crystallization by orders of magnitude. Previous rheo-optical experiments have indicated that the creation of long-lived, oriented structures during flow is controlled by the dynamics of the melt.(2) We present polarimetry and synchrotron wide-angle x-ray diffraction (WAXD) data obtained during and after shear of an iPP believed to contain chains with long branches. Results suggest that shearing near the nominal melting temperature induces the formation of a slow relaxing species that templates subsequent oriented crystal growth, emphasizing the importance of rheology to shear-enhanced crystallization.

Snap-Fit Performance as Predicted by Three Rapid Prototyping Techniques
Leonard Rusli, Anthony F. Luscher, May 2001

This research involves the area of rapid prototyping (RP) and a new concept called functional prototyping. The overall goal of this project was to determine if current rapid prototyping methods allow for the prediction of the mechanical performance of a molded snap-fit. The Rapid Prototyping methods that were evaluated are Fused Deposition Modeling (FDM), Selective Laser Sintering (SLS), and machining plastic from stock shape. The results show that machining is the best method to use for functional testing, followed by SLS, and FDM. An attempt to ratio the results using the modulus of elasticity and yield strength are not quite satisfactory. But it can still be used for the rough estimation. Each of the prototypes types has its own tendency to deviate from the actual value.

  Welcome Page

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net