SPE Library

The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 

Search SPE Library

Sort By:  Date Added   Publication Date   Title   Author

Conference Proceedings

Morphology-Property Relationship in Blown Films of LDPE, LLDPE and Their Blend
Jianjun Lu, Hung-Jue Sue, May 2001

The morphologies of films blown from an LDPE, an LLDPE and their blend were characterized and compared using transmission electron microscopy, small-angle X-ray scattering, infrared dichroism, and thermal shrinkage techniques. Under similar processing conditions, the LLDPE film has a relatively random crystal orientation. The film made from the LDPE/LLDPE blend possesses the highest degree of crystal orientation. Nevertheless, the LDPE film has the greatest amorphous phase orientation. The physics that is responsible for the high degree of crystal orientation in LDPE/LLDPE blend film is proposed. The structure-property relationships of the films are also discussed.

Non Woven Textiles from Melt Spun Recycled PET
Mark Kegel, Igor Sbarski, Edward Kosior, May 2001

This study examines the effect of nucleating agents on the physical properties of melt drawn fibres made from post consumer Recycled Polyethylene Terephthalate (RPET). Clear and coloured RPET derived from carbonated soft drink bottles have been used in this study. Titanium dioxide (TiO2) and carbon black (CB) have been added at varied addition rates in a linear low density (LLDPE) and PET carrier. The effect these additives have on the physical properties of the finished textile were evaluated. Evaluations show that reprocessed bottle grade PET is suitable for fibre applications if the intrinsic viscosity and the final fibre properties are carefully controlled. LLDPE masterbatch containing TiO2 and CB at addition rates in the order of one percent were able to improve processing, physical properties and the rate of crystallisation.

Recycling of Multilayer and Barrier Coated PET Containers
Mark Kegel, Edward Kosior, May 2001

This paper describes the process for removing barrier layers and coatings (oxygen and carbon dioxide) from polyethylene terephthalate (PET) substrates through a conventional mechanical bottle recycling system. Varied wash chemistry and barrier medium have been examined and the effect on residual multilayer material or coating has been evaluated. Wash chemistry was found to be the controlling factor in improving the external coating removal efficiency. Delamination through mechanical working was found to be the controlling mechanism for separating multilayer materials. The conclusion drawn from our experiments is that the PPG Bairocade coatings were removed most efficiently. Internal deposition techniques may contribute fewer residues to the RPET, however substantiating this is difficult.

Three-Dimensional Non-Isothermal Numerical Analysis of Multi-Layer Coextrusion
Rong-Yeu Chang, Chao-Sheng Ke, Wen-Hsien Yang, Wen-Li Yang, David C. Hsu, May 2001

This paper presents a three-dimensional finite volume algorithm together with the Lagragian mesh technique for simulating the non-isothermal non-Newtonian stratified flow of two or more polymers in a square channel. From the benchmark calculations, the simulated interface shape shows good agreements with numerical results of previous researchers. Moreover, the effects of temperature, viscosity, flow rate ratios and the contact angle on the encapsulation phenomena are also examined. Flow system up to five-layer is also reported in this study. The efficiency of the proposed approach makes it possible to simulate even more complex system on a regular PC.

Injection Molding Unfilled and Filled Polymers with Titanates and Zirconates - 2001
Salvatore J. Monte, May 2001

In addition to pigment/reinforcement/filler to polymer coupling, two parts of thermally stable neopositioned quaternary carbon based neoalkoxy [neopentyl(diallyl)oxy] type titanates and zirconates per thousand parts of polymer provide for in situ metallocene-like Repolymerization" catalysis of the filled or unfilled polymer during the plastication phase resulting in: faster injection molding production cycles at lower process temperatures; maintenance or increase in mechanical properties; the in situ regeneration of regrind polymer to virgin properties; the lowering of polymer recrystallization time; and the copolymerization of dissimilar polymers. For example using a neoalkoxy tridodecyl-benzene sulfonyl titanate both 40% CaCO3 filled and unfilled "Repolymerized" PP compounds experienced respective reductions of 35.5% and 42% in injection mold cycle time and 22% and 11% in process temperature; and a 39.7% reduction in the recrystallization time of PPS. Two parts of a neoalkoxy tridioctyl phosphato titanate regenerated and copolymerized one thousand parts of a PET regrind/PC regrind providing a nine-fold increase in the elongation of the alloy. The effect is shown to be permanent and recyclable."

Three-Dimensional Numerical Analysis of the Single Screw Plasticating Extrusion Process
Rong-Yeu Chang, Che-Wei Hsu, Wen-Hsien Yang, Wen-Li Yang, David C. Hsu, May 2001

This paper presents a 3D numerical model to investigate the plasticating phenomena in the single screw extruder. The FVM is adopted to solve the governing equations to obtain the velocity and pressure profiles. The enthalpy formulation for the energy equation and the liquid fraction method are introduced to model the melting mechanism between the melts and the solid bed. The 3D simulation can predict both the melting length in the down channel and the local solid fraction in the cross channel. The predicted pressure drop, temperature distribution and melting behavior are in reasonably good agreement with the experimental results.

Three-Dimensional Simulation of Injection-Compression Molding of a Compact Disc
Rong-Yeu Chang, Wen-Ya Chang, Wen-Hsien Yang, Wen-Li Yang, David C. Hsu, May 2001

A finite volume algorithm for simulating polymer injection-compression molding is presented. The developed numerical model deals with non-isothermal flow of compressible, non-Newtonian fluids in complex 3D geometry. Tait equation with modification of considering cooling effect is incorporated to describe the non-equilibrium polymeric pvT behavior during compression phase. The developed methodology is applied to study the cooling, pvT behavior as well as the thermal shrinkage of the injection-compression molded compact disc.

Thermal Analysis of Blends of Recycled HDPE and Virgin Polyolefins
Paul Miller, Edward Kosior, Igor Sbarski, Syed Masood, Pio Iovenitti, May 2001

This paper investigates the melting point and crystallinity behaviour of blends of recycled milk bottle HDPE with injection moulding and film blowing grade high density polyethylene (HDPE), linear low density polyethylene (LLDPE) and low density polyethylene (LDPE) as part of a larger investigation into blends of recycled HDPE and virgin polyolefins. The variation in melting points and crystallinity levels for blends of recycled HDPE with either HDPE or LLDPE were linear with composition, and displayed only one melting point, while recycled HDPE with LDPE displayed separate melting points for each compositional component.

The Effect of Inertia on Fill Pattern in Injection Molding
Franco S. Costa, Shishir Ray, Chris Friedl, Peter S. Cook, Shoudong Xu, May 2001

By numerical simulation of the full three dimensional Navier-Stokes flow equations, it is possible to observe the influence of inertia effects on the filling pattern of an injection molded part. Traditional shell-based Hele-Shaw flow simulations have assumed that the momentum (inertia) contribution to the fluid flow is negligible. However, thick walled parts and complex parts are poorly represented by shell models. Under certain processing conditions for these thick geometries, inertia effects will influence the flow pattern. Simulation studies are presented in this paper which compare flow solutions with and without inertia effects.

A Novel Three-Dimensional Analysis of Polymer Injection Molding
Rong-Yeu Chang, Wen-Hsien Yang, May 2001

The advantages of three-dimensional (3D) mold-filling analysis over the 2.5D model are twofold: improving the prediction accuracy and avoiding the mid-plane construction. Moreover, 3D analysis is essential in the simulations of GAIM or IC packaging. This paper presents a highly efficient 3D approach to simulate the non-isothermal non-Newtonian melt flow in injection molding. The proposed approach shows good agreement in comparison with 2.5D model for molding of thin parts. Some industrial examples with complex geometries are analyzed to illustrate the capabilities of the presented approach.

New Cost-Efficient Process for the Production of Large-Volume High-Voltage-Insulators Made of Liquid Silicone Rubber (LSR)
E. Henze, E. Haberstroh, May 2001

The unique combination of chemical and physical properties predestines LSR for applications in the field of electrical insulation. Due to high investment for mold and machine technology an economical production can be reached for medium or large series only. In this thesis a new technology is developed for casting large volume parts at a low level of cavity pressure. Separate heating of the material components to a temperature level just below mold temperature leads to a controlled decrease in cavity pressure. Simultaneously, a considerable reduction in cycle time is reached due to a faster curing process. Since the new technology developed enables the use of simple mold designs without clamping units, a significant reduction in investment is achieved.

Recycling of Crosslinked Multi-Layer Thermoplastic Films - Miscibility Studies
Marcel G. Sittel-Faraj, Ferenc Cser, Margaret Jollands, Sati Bhattacharya, May 2001

This study was part of a program of work undertaken to develop recycling technology for multi-layer films which are not currently recycled. These multi-layer films comprise barrier layers with surface layers for mechanical strength, and tie layers between. Crosslinking is used to enhance various mechanical properties. The crosslinked layers have a high viscosity which creates processing problems, eg. if the film is recycled, high processing pressures are required. Furthermore, material blend component incompatibilty can result in inferior mechanical properties. Monolayer films of the virgin materials were produced. Multi-layer film with crosslinked EVA/LLDPE and a barrier layer was produced on a blown film line. This multi-layer film was agglomerated" then reprocessed in a twin screw extruder with virgin LDPE and LLDPE and blown into film. The blend miscibility was then determined using a TA Instruments TMDSC. It was found that LDPE blends were initially miscible with the containing scrap whereas LLDPE blends were immiscible. The LDPE miscibility was partly reversible as the blend components phase separated after the second heat treatment during testing in the TMDSC instrument. The initial miscibility was attributed to being induced by high shear during processing."

Thermal and Mechanical Properties of Silane-Grafted Moisture-Crosslinked Polyethylene
Jenn-Fong Kuan, Liang-Chi Tu, Kuo-Hsiung Wang, Jaine-Ming Huang, May 2001

The vinyl trimethoxysilane VTMS" was grafted onto various polyethylenes ( HDPE LLDPE and LDPE) using DCP as an initiator in a twin screw extruder. The grafted polyethylenes were able to cross-link utilizing water as the crosslinking agent. The effects of varied crosslinking time on the mechanical properties of the crosslinked polyethylenes were studied. It was found that the HDPE and LLDPE were apt to cross-link during the grafting process and thus decreased the grafting ratio. Multiple melting behavior was observed for cross-linked LDPE and LLDPE. The mechanical and thermal properties of the crosslinked PE are better than uncrosslinked PE." LLDPE and LDPE) using DCP as an initiator in a twin screw extruder. The grafted polyethylenes were able to cross-link utilizing water as the crosslinking agent. The effects of varied crosslinking time on the mechanical properties of the crosslinked polyethylenes were studied. It was found that the HDPE and LLDPE were apt to cross-link during the grafting process and thus decreased the grafting ratio. Multiple melting behavior was observed for cross-linked LDPE and LLDPE. The mechanical and thermal properties of the crosslinked PE are better than uncrosslinked PE."

Application of Liquid Gas-Assisted Injection Molding to the X-Arm of a Chair
Dong-Hak KIM, Kwansik OH, May 2001

Application of gas-assisted injection molding (GAIM) has been expanded within last 15 years because of many advantages such as design flexibility, dimensional stability, reduction of machine tonnages, and so on. But, for thick parts, it is observed the surface defects including hesitation mark and gloss difference. Difficulties in lay-out of the gas channel and processing condition are another disadvantages[1]. Liquid gas-assisted injection molding (LGAIM) is a good alternative of conventional gas-assisted injection molding especially in manufacturing simple and very thick parts. The heat-activated liquid vaporizes and pushes the melt downstream and creates hollow channels within parts[2,3]. We developed the total system that includes control unit (control of volume, pressure, and time of the liquid), liquid-injection nozzle, recipe of liquid system, and part/mold design (CAE analysis). As an applicable part, X-arm of a chair was selected. From experiments, it was observed stable hollow formation without hesitation mark and sink mark. And we was able to reduce the cycle time and weight

PVC/Clay Nanocomposites
J. Trlica, A. Kalendova, Z. Malac, J. Simonik, L. Pospisil, May 2001

Polymer/clay nanocomposites prepared from intercalated montmorillonite and PVC were compounded in KO-kneader with dioctylphtalate (DOP) as a plasticizer. An influence of the type of used organoclay on thermal stability was observed. Problems with the composition thermal stability during compounding can be eliminated by pretreatment of the organoclay with plasticizer which creates a barrier between polymer and quaternary amine. Simultaneously co intercalation of plasticizer facilitates exfoliation and dimension clay platelets in the polymer matrix. A positive influence of nanoclay on dimensional stability and permeability was observed.

Cure of an Epoxy Thermoset System Modified with Engineering Thermoplastics
M.J. Amaral, A. Espejo, M. Arellano, May 2001

During the cure of a thermoset-thermoplastic blend two-phase morphologies may be formed. The phase separation process may be controlled by manipulation of the rate of polymerization of the thermoset system. In this work, the effect of the addition of different thermoplastics on the rheokinetics of an epoxy thermoset system is presented. The reactive system used was diglycidyl ether of bisphenol-A cured with 4-4' diaminodiphenyl sulfone. The kinetics was followed by differential scanning calorimetry and the change in the rheological properties during the curing by dynamic rheometry.

Influence of Temperature and Initiator Type on the Functionalization of High Density and Lineal Low Density Polyethylenes
B. Rojas de G, D. Guerra, J. López, J.L. Prin, May 2001

The obtaining of compatibilizers for blends by functionalization has led the study of this modification in the polyethylene. Three initiators were used in the grafting of High-Density Polyethylene (HDPE) with diethylmaleate. Also was investigated the dependence of the functionalization degree on the temperature of Linear-Low Density polyethylene (LLDPE). The compared initiators were 2,2'- Azobisisobutyronitrile (AIBN), benzoyl peroxide (BP) and 2,5-dimethyl-2,5-di-(t-butylperoxy)hexane (DBPH). It was found that under the same experimental conditions the grafting degree in the HDPE decrease follows the order of the initiators: DBPH > BP > AIBN.

Morphology and Mechanical Behavior of Poly(3-Hydroxybutyrate)/Functionalized Ethylene Copolymers Blends
Alexey M. Giornes, Marcos L. Dias, Luis C. Mendes, May 2001

The possibility of poly(3-hydroxybutyrate) (P(3HB)) mechanical properties improvement through reactive blending with ethylene-methacrylic acid copolymers either in the acid form (I-H) or partially neutralized with Zn (I-Zn) and Na (I-Na) was investigated. Blends of P(3HB) and I-H, I-Zn and I-Na were prepared in an internal mixer and in a double screw extruder. The blend with I-H showed the best results for mechanical properties. All the blends showed a significant reduction in the Young modulus, which was smaller for P(3HB)/I-Zn blends. Blends containing 30% of I-Zn presented the higher impact resistance and morphology containing the dispersed phase as cylindrical domains.

Strain Hardening Behavior in Elongational Viscosity for Blends of Linear Polymer and Crosslinked Polymer
Masayuki Yamaguchi, May 2001

Rheological properties for the binary blends of a linear polymer, such as isotactic polypropylene (PP) and polystyrene (PS), and gel fraction of a crosslinked terpolymer composed of ethylene, 1-hexene, and ethylidene norbornene (gEHDM) have been studied. Blending of the gEHDM, which is characterized as the gel just beyond the sol-gel transition point, much enhances the strain hardening behavior in the elongational viscosity of PP, even though the amount of the gEHDM is only 1 wt%. On the other hand, the PS/gEHDM (97/3) blend shows no strain hardening in the elongational viscosity. The entanglement couplings between the gEHDM and the PP will be responsible for the strain hardening behavior.

Energy Dissipation from a Perfectly Elastic Material
Arun Raman, Richard J. Farris, May 2001

Energy dissipation is possible even from a perfectly elastic material, preferably an elastomer, when it is subjected to a shock" stretch or a "shock" contraction. This dissipation is not the usual viscoelastic or plastic losses associated with internal friction in solids. The energy values associated in this "shock" process are independent of the path of the stress-strain curve and depend only on the initial and final states for the elastic material. The sudden "shock" stretch of the elastic material is equivalent to thermodynamic free compression of a gas. Heat dissipation from an elastic rubber belt is examined."

  Welcome Page

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net