SPE Library

The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 

Search SPE Library

Sort By:  Date Added   Publication Date   Title   Author

Conference Proceedings

The Effects of Comonomer Type on the Blown Film Performance of LLDPE Resins Made Using a Metallocene Single-Site Catalyst
Ashish M. Sukhadia, M. Bruce Welch, Raj K. Krishnaswamy, Syriac J. Palackal, May 2000

In this paper, we report on the effects of comonomer type viz. 1-butene, 1-hexene and 1-octene, on the blown film performance of linear low density polyethylene (LLDPE) resins made using a metallocene single-site catalyst. The effect of film thickness on blown film properties was also examined. The resins were characterized in detail with respect to their rheological, thermal and molecular characteristics. It was established that these three copolymers, despite the great similarities in their molecular, rheological and thermal properties, exhibited blown film performance that clearly increased with increasing length of the ?-olefin employed.

Viscoelastic Stress Calculation in Multilayer Coextrusion Dies
C. Tzoganakis, M. Zatloukal, J. Perdikoulias, P. Saha, May 2000

Calculation of transient viscoelastic stresses in a coextrusion die is performed using the modified Leonov constitutive equation and the deformation rate field from finite element simulations. It is shown that a heuristic criterion based on the difference of normal stress differences across the layer interfaces may be used to potentially detect the onset of interfacial instabilities. Finally, it is shown how this criterion may be incorporated into current design practices to optimize resin selection and die design in order to eliminate interfacial instabilities.

An Overview on Polyvinyl Chloride (PVC) and Alternatives in Medical Applications
K.Z. Hong, May 2000

Numerous polymeric materials have emerged recently as potential alternatives to polyvinyl chloride (PVC) for medical device applications. The candidates include thermoplastic elastomers (TPE), metallocene-catalyzed polyethylenes and polypropylenes, co-extruded and laminated multi-layer structures, and multi-component polymer blends and alloys. Material performance requirements and manufacturability in medical applications will be discussed. Properties of alternative materials are compared with attributes of PVC and with functional requirements of medical devices to provide an overall perspective on potential opportunities of replacement.

Melt Rheological Properties of Natural Fiber-Reinforced Polypropylene
Jarrod J. Schemenauer, Tim A. Osswald, Anand R. Sanadi, Daniel F. Caulfield, May 2000

The melt viscosities and mechanical properties of 3 different natural fiber-polypropylene composites were investigated. Coir (coconut), jute, and kenaf fibers were compounded with polypropylene at 30% by weight content. A capillary rheometer was used to evaluate melt viscosity. The power-law model parameters are reported over a shear rate range between 100 to 1000 s-1. Effects on melt viscosity with the use of a coupling agent and different fiber types were also evaluated.

Injection Molding Tie Bar Extension Measurements via Strain Gauge Collars for Optimized Processing
Norbert Müller, Nick R. Schott, May 2000

The measurement of the clamping force in injection molding can give valuable insight for optimization of the process. Problems in production are often related to the level and the distribution of the clamping force. A novel measuring system that employs strain gauges that are clamped around the tie bars make a precise measuring method applicable in a rugged industrial environment. It was the objective of this work to evaluate the performance of the device in practical use.

Evaluating the Energetics of Heterogeneous Deformation in LLDPE Films under Biaxial Loading Conditions
Amiel B. Sabbagh, Alan J. Lesser, May 2000

Post-yield, heterogeneous deformation (dilatational bands) occurs in linear, low density polyethylene films under certain biaxial loading conditions. The dilatational band evolution occurs primarily by isotropic expansion and the energy release rate is therefore determined using the M integral. A thermodynamic model is used to determine a material property that describes the energy associated with the drawing process. The thermodynamic model and the M integral appear to be appropriate for modeling this process.

The Extrusion of Multi-Layer Barrier Tubing from Cross Linked Polyethylene (PEX)
John A. Colbert, May 2000

The use of multi-layer tubing, based upon PEX, is growing substantially especially in hot water plumbing applications. Improvements in Oxygen barrier, thermal stability and durability, are the major properties that are driving this growth. Whilst papers have been presented on the cross linking process, and long term durability of PEX, very little has been published on the process of producing five layer PEX tubing. This paper covers the process and methods used to achieve consistently high quality. It looks at extrusion conditions, screw design, die technology, control of layer thickness and centricity, and vacuum sizing techniques and how they can influence factors such as surface finish and ovality. It also looks at measurement of layer thickness and the overall tube dimensions. All aspects are illustrated with actual results from production scale work based upon a 90mm extruder line.

Incompressible Model of Solids Conveying in a Single-Screw Extruder
Shibo Zhang, Valentinas Sernas, May 2000

Experiments in corn meal extrusion [18] have shown that the flow of solids in the screw channel of a single-screw extruder has a helical pattern. This observation implies that there is a cross-channel velocity component in the solids conveying zone of the extruder. Existing solids conveying models [2,5,6,9] treat the solids moving in the channel as a plug flow without a cross-channel velocity component. The two-dimensional powder conveying model proposed in this paper contains both a down-channel component and a cross-channel component. The stress generating mechanism is much more complicated in a powder flow than in a fluid flow. The incompressible model incorporates a constitutive equation for the powder flow with slip boundary conditions. The energy equation with appropriate boundary conditions is also included in the model. The numerically solved model shows that the predicted down-channel pressure development, velocity and temperature distributions are all reasonable.

Carbon Black (CB) Distribution in Binary Immiscible Polymer Blends
Jiyun Feng, Chi-Ming Chan, May 2000

Carbon Black(CB) distribution in binary immiscible polymer blends was elucidated by computer simulation and experimental observation (scanning electron microscopy (SEM) and optical microscopy (OM)). It has been found that the predictions of CB distribution by computer simulation based on a thermodynamic model are in agreement with microscopic observations when the viscosity of the two components is in a similar range. However, when the viscosity of one component in binary immiscible polymer blends is extremely high, the predictions are not valid due to incomplete wetting of CB particles by the high viscosity component.

Morphology Identification of a Polymer Blend by Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS) Chemical Imaging
Jiyun Feng, Chi-Ming Chan, Lu-Tao Weng, May 2000

The bulk morphology of a multi-component polymer blend of PC/PMMA/PVDF(50/20/30) was elucidated in detail by ToF-SIMS negative and positive chemical imaging. Based on the characteristic negative or positive secondary ions generated from different polymers under a 69Ga+ beam, bulk morphology can clearly be identified. A combination of negative and positive ion chemical imaging directly revealed that PMMA is distributed in the PVDF phase. Our results indicated that even though ToF-SIMS is a special technique used in surface and interface studies, it is also a powerful tool in the study of bulk morphology of polymer blends.

Relaxation of Residual Stress in a PPS High Precision Part
Lee E. Hornberger, Lilia A. Sanchez, May 2000

Glass filled polyphenylene sulfide (PPS) is a preferred material for many electronic applications because it is known to be dimensionally stable when exposed to elevated temperatures for short periods of time. The presence of residual stress, however, significantly affects the dimensional stability of this material. In this study, a new testing method, holographic interferometry, was used to monitor the relaxation of residual stresses in the molded actuator arm of a hard drive due to exposure to elevated temperatures. With this method, permanent deformation was detected in the arm at temperatures ranging from 40-80°C. This deformation is enough to cause significant problems in the high precision components of the hard drive.

Electrical Static Dissipative Composites Made from Coated Fillers
Brian P. Grady, W. Berlin Genetti, May 2000

A novel polymerization technique, admicellar polymerization, was used to coat alumina with a thin layer of polypyrrole. A polyethylene composite made from the uncoated material had a conductivity of approximately 10-9 S/cm, well below the useful conductivity range for most applications. However, the conductivity of the composite made with the coated material was approximately 10-5 S/cm, which is in the conductivity range of many electrically static dissipative applications.

Permeation of Thermoplastics through Random Fiber Mats
Jurron Bradley, John Muzzy, May 2000

The permeation of fiber mats by thermoplastics has not been studied in depth. In order to address this issue, the permeation of nylon 6 and polypropylene through random glass, carbon, and sisal fiber mats has been studied. A transverse Kozeny constant of 4.6 was calculated for the permeation experiments, and a non-Newtonian permeation model was found to predict the permeation rate of the thermoplastics into the fiber mats well.

An Integrated Process for Medical Design Success
Robert L. Braido, May 2000

Customer driven medical product development is a process to shorten the development cycle time and drive speed to market. It focuses on the product concept and the design freeze to develop a manufactureable assembly with built in quality while lowering manufacturing costs.

Benchmarking STL-Based Plastic Analysis
Geoffrey Engelstein, May 2000

New software packages allow for full dynamic analysis of plastic filling and cooling using a finite-element mesh derived from an STL model. The elimination of the need to create a midplane mesh holds out the promise of getting analysis results much faster and with less training and specialized knowledge. Does the reality stack up? This presentation examines the new meshing process and compares analysis results obtained through both the STL and traditional midplane mesh methods. Guidelines will be offered to assist in the proper usage of this tool to help enhance its effectiveness and avoid pitfalls.

Metal Injection Molding: Simulation of Three-Dimensional Flow with Free Surface Boundary and Experimental Comparison
Florin Ilinca, Jean-François Hétu, Abdessalem Derdouri, Brian Holmes, Craig Scott, James Stevenson, May 2000

A three-dimensional transient finite element flow analysis code that includes inertia and free surface boundary conditions is used to predict uniform (axisymmetric) and nonuniform (nonaxisymmetric) filling patterns in a thick-walled tool with a diaphragm gate. The simulation for a powder injection molding compound, which is strongly influenced by thermal effects, predicted several observed flow patterns: initial annual free surface flow, bypass and folding flow to form internal weld lines, and the transition from uniform (axisymmetric) flow to nonuniform (nonaxi-symmetric flow) with increasing fill time. The effects of inertia, yield stress, and wall slip on the filling patterns were assessed.

A Three-Dimensional Analysis of Coextrusion in a Single Manifold Flat Die
W.A. Gifford, May 2000

The coextrusion of two polymers through a single manifold flat die is examined. The three components of velocity and the pressure are determined in each layer along with the interface between the layers. It is shown that even when the viscosity ratio is one (i.e., single layer), flat layers" entering the die will not remain flat but will be distorted by the die. For coextrusion of two polymers the distortion of the interface profile at the exit of the die and thus the uniformity of the layers depends upon the viscosity and flow rate ratios of the two polymers as well as the geometry of the die."

Influence of Temperature, Molecular Weight and Molecular Weight Dispersity on the Surface Tension of Polystyrene (PS): Experiment and Theory
José Carlos Moreira, Nicole Raymonde Demarquette, May 2000

In this work, the influence of temperature, molecular weight (Mn) and molecular weight dispersity (MWD) on the surface tension of polystyrene (PS) was evaluated using the pendant drop method. The discrete interface cell model (DICM) theory was used in conjunction with the Flory, Orwoll, and Vrij (FOV) equation of state theory to predict surface tension (?) with bulk pressure-volume-temperature (PVT) data. It was shown that surface tension of PS decreases with increasing temperature for all PS studied. The surface tension of PS increased when the molecular weight of polystyrene was varied from 3,000 to 40,000. When the molecular weight of PS was further increased the surface tension was shown to level off. The surface tension was shown to decrease with increasing molecular weight distribution. The theoretical predictions of DICM theory corroborated with the experimental results as far as the influence of temperature, molecular weight was concerned.

Computer Aided Design for Rotationally Molded Parts
John Fawcett, May 2000

3D Cad software is improving new product development in many plastic fields including rotational molding. These improvements are leading to better products that are developed faster with fewer down stream changes. Because a 3D Cad electronic file gives a more complete design that can be viewed as a 3-dimensional model or represented as a 2D drawing, everyone involved with the project has a better understanding of the final product. Some features of 3D Cad can improve the development process in ways that are unique to rotationally molded products. The use of 3D Cad is also creating new opportunities for the use of rotationally molded products because tighter tolerances can be achieved when the 3D electronic file is used to create the tooling models and/or molds.

The Role of Phosphites in Stabilization of Non-Polyolefin Polymers
Henry C. Ashton, William Enlow, Tim Nelen, May 2000

The use of organophosphites as stabilizers for polyolefins has been well described and documented(1). This paper deals with the use of phosphites as stabilizers in non-polyolefin applications such as PVC and also in condensation polymers e.g. Polyesters, polyamides, and polycarbonates. A key point in understanding the application of phosphites in such materials is that the process of polyolefin thermooxidative degradation begins with thermomechanical scission of a carbon-hydrogen bond that yields a polymer based macroalkyl carbon-centered free radical. This free radical is highly reactive with molecular oxygen yielding a peroxy radical which can by interaction with the polymer substrate generate other free radical species such as alkoxy radicals and the highly detrimental hydroperoxides (see Figure 1).

SPE-Inspiring Plastics Professionals

© 2024 SPE-Inspiring Plastics Professionals.
All rights reserved.

84 countries and 60k+ stakeholders strong, SPE unites plastics professionals worldwide – helping them succeed and strengthening their skills through networking, events, training, and knowledge sharing.

No matter where you work in the plastics industry value chain-whether you're a scientist, engineer, technical personnel or a senior executive-nor what your background is, education, gender, culture or age-we are here to serve you.

Our members needs are our passion. We work hard so that we can ensure that everyone has the tools necessary to meet her or his personal & professional goals.

Contact Us | Sitemap | Data Privacy & Terms of Use



SPE US Office
83 Wooster Heights Road, Suite 125
Danbury, CT 06810
P +1 203.740.5400

SPE Australia/New Zealand
More Information

SPE Europe
Serskampsteenweg 135A
9230 Wetteren, Belgium
P +32 498 85 07 32

SPE India
More Information

SPE Middle East
More Information

3Dnatives Europe
157 Boulevard Macdonald
75017, Paris, France
More Information

Powered By SPE

SPE-Inspiring Plastics Professionals

SPE-Inspiring Plastics Professionals

SPE ImplementAM

SPE-Inspiring Plastics Professionals

SPE-Inspiring Plastics Professionals

SPE-Inspiring Plastics Professionals

  Welcome Page

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net