SPE Library

The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 

Search SPE Library
After Date: (mm/dd/yy)  
Sort By:   Date Added  ▼  |  Publication Date  ▼  |  Title  ▼  |  Author  ▼
= Members Only
Conference Proceedings
Novel In-Line Rheometer for Polymer Melts, Compounds and Solutions
Michael McBrearty, Safwat Tadros, May 2000
A rugged new process rheometer employs a cam rotating in a cylindrical cavity containing a flush mounted pressure transducer. The cam generates excess hydrodynamic pressure in the wedge-shaped region between its outer edge and the cavity wall. As the cam passes the transducer, the measured pressure increases, reaches a maximum and then decreases. The amplitudes of the pressure fluctuations are proportional to viscosity. The shear rate of the viscosity measurement is the cam speed divided by the gap distance. The instrument continuously records and analyzes pressure versus time profiles. For dual shear rate measurements, two cams are keyed to an extruder screw or the shaft of a gear pump. For continuous shear rate sweeps, external variable speed drive motors can be used with side stream and reactor vessel versions. In-line and referee lab data are presented for typical polymers and rheometer configurations.
A Novel Technique for the Detection of a Hindered Amine Light Stabilizer (HALS), Based on Silicon Technology
Subramaniam Narayan, Robert E. Lee, Dallas Hallberg, Vincenzo Malatesta, May 2000
Polyolefins such as polypropylenes need to be stabilized effectively against UV radiation in order to have a useful product life. The use of hindered amine light stabilizers (HALS) in polypropylene fibers and molded articles has been gaining popularity. Specific applications include automotive bumpers, medical devices and polypropylene fibers for carpets. A novel method was developed to detect the presence of a hindered amine light stabilizer (HALS), based on silicon technology in polypropylene. The method consists of extracting the HALS from the polypropylene matrix followed by detection and quantification using proton NMR spectroscopy.
Design and Analysis of Crosshead Annular Die for Braided Medical Tubing Extrusion
X. Guo, R. Stehr, May 2000
A theoretical method is proposed for optimum design of a crosshead annular die used for medical tubing. According to this method, the geometric variables are determined to minimize the change in gapwisely-averaged flow velocities due to the variation in flow patterns inside the transitional region of the flow channel of the die, namely the gum space. To achieve this, a numerical approach to flow analysis is put forward based upon the simplified motion and energy equations as well as the approximation of the flow channel using a series of varying annular slits, each having constant geometric parameters. Accordingly, the numerical schemes for flow analysis and design optimization are established, and the computer program is developed using Microsoft Visual C++ 6.0. For an optimum die design, the heat adhesion between the cold-fed inner tube and the hot melt during the over-extrusion is evaluated based upon the temperature rise and pressure profile of the melt in the die land. Based upon the optimum die design obtained from the method, the flow is well balanced with enhancement of extrusion quality. Also, it is found that the optimum die designs are less sensitive to extrusion conditions within a certain range.
Recycling PVB Automotive Windshield Interlayer
Robert S. Boyd, Daniel M. Sullivan, May 2000
PVB (polyvinyl butyral) windshield interlayer retains physical properties very well, owing to being effectively packaged in glass prior to recycling. However, the cost of removing all of the contaminant has precluded PVB's acceptance in many applications where it might, otherwise, have been usefully recycled. We have found that finely pulverizing the scrap, with its attendant residues, allows melt-process manufacture of products meeting automotive requirements for vibration damping, tensile strength, tear resistance, and flexibility, over a wide range of temperatures.
Adding Value to Rotational Moldings with Color and Special Effects
Nick Henwood, May 2000
This paper reviews the different ways of adding color in rotational molding and provides technical and economic arguments for each method. The effects of pigment incorporation on base material properties are discussed and the importance of factors such as pigment type, pigment loading and method of mixing are examined in relation to material processing, physical properties and the aesthetics of the final rotomolded part. The use of special effects such as stone and antique look colors to give further value enhancement is discussed.
Some Reasons Not to Use Multi-Cavity (>4) Tools
John W. Bozzelli, May 2000
Injection molding continues to be the preferred plastic process for making large quantities of plastic parts. The goal is to make identical parts. When parts are not identical problems develop, not just in performance but also in assembly. The trend toward more complex parts, coupled with demanding tolerances continues to challenge processors in pursuit of the goal of identical parts. Reasons against the trend for high cavitation molds are proposed.
Supercritical Carbon Dioxide Assisted Polymer Blending in Twin-Screw Extrusion: Relations between Morphology Evolution and Mechanical Properties
M.D. Elkovitch, L.J. Lee, D.L. Tomasko, May 2000
Supercritical carbon dioxide (scCO2) was added during compounding of polystyrene and poly(methyl methacrylate) (PMMA) and the resulting morphology development was observed. The compounding took place in a twin screw extruder. Viscosity reduction of PMMA and polystyrene were measured using a slit die rheometer attached to the twin screw extruder. Carbon dioxide was added at 0.5, 1.0, 2.0 and 3.0 wt.% based on polymer melt flow rates. A viscosity reduction of up to 80% was seen with PMMA and up to 70% with polystyrene. A sharp decrease in the size of the minor (dispersed) phase was observed near the injection point of CO2. However, further compounding led to coalescence of the dispersed phase. De-mixing of the dispersed phase occurred upon CO2 venting. The resulting morphology was similar to that without the addition of CO2. Adding small amounts of fillers (e.g. carbon black, calcium carbonate, or nano-clay particles) tended to slow down the de-mixing of the polymer blend system when the CO2 was released. The comparison of morphology and mechanical properties for various polymer blends with and without CO2 considerations will be reported.
The Effect of Varying Injection Molding Conditions on Cavity Pressure
Sonja Macfarlane, Rickey Dubay, May 2000
Obtaining high quality parts in injection molding requires the understanding of the many interactions that exist between the molding parameters. Cavity pressure and part mass are good indicators for maintaining high product quality and obtaining good machine control performance. The effect on cavity pressure and part mass was investigated by varying the molding conditions using a two-phase screw-plunger injection molding machine. The molding parameters that were perturbed included the barrel temperature, injection velocity and hold pressure. The results provided a good understanding of the effect of changing the molding conditions on cavity pressure and part mass for a two-phase injection machine.
Surface Analysis of Polymeric Materials: Roughness Exponent
Edgar Reyes, Carlos Guerrero, Moisés Hinojosa, Virgilio González, May 2000
The self-affine behavior of fracture surfaces of polypropylene, PP, and polystyrene, PS, were analyzed applying the variable bandwidth method to the height profiles generated with an atomic force microscope, AFM. The roughness exponent, ?, obtained with this method was 0.788-0.008 for PP samples and V=0.81-0.023 for PS. These results are in very good agreement with the claimed universal value of V=0.8 reported in the literature for other non-polymeric materials. Melted PP was crystallized following two different cooling rates and the crystalline surfaces were also analyzed, obtaining similar roughness exponents. This fact probably means that, for this case, the self-affine behavior could be independent of the crystallization rate.
Morphology and Thermal Loading in Laser Welding of Thermoplastics
Jörg Vetter, Fabienne Duriau-Montagne, Gottfried W. Ehrenstein, Dirk Hänsch, May 2000
Laser welding, an innovative, flexible technology for joining of thermoplastics, now starts to make its way from scientific laboratories into industrial series production. There has been intense research on weld strength de-pending on polymer, butt design, fillers and absorption behavior. Nevertheless, a considerable lack of knowledge concerning the fundamental relationship between the process and its influence on thermal loading of the weld plane and resulting morphology still exists. Actual results of laser transmission welding experiments - including thermal and microscopic analysis of the weld plane - could contribute to a better understanding of the process itself and to success in practical applications.
Temperature Calculation of Plastic Gears
Peter Faatz, Gottfried W. Ehrenstein, May 2000
Plastic cog-wheels may run completely without lubricants. When using plastic cog-wheels a service life dependent on the application is to be guaranteed. Because the service life of the cog-wheel is limited by the wear of the flank of the cog-wheel, the specification of the wear is required for dimensioning plastic gears. Caused by frictional processes at the surface of the cog, heat is produced. Like the mechanical properties of plastics, the wear also strongly depends on temperature. Therefore, it is necessary to determine the temperature of the cog. Plastic gears are tested and the cog temperature is measured by means of a thermal camera. Polyacetal cogwheels with a modulus of 1 mm are examined. It will be shown, that the cog temperature can be calculated on the basis of heat balances with a known coefficient of friction.
Polymer Melt Flow Behavior in the Coinjection Molding Process
K.T. Nguyen, E. Turcott, A. Derdouri, D. Ait Messaoudz, B. Sanschagrin, B.A. Salanton, K.A. Koppi, May 2000
An experimental study of the co-injection molding process was carried out. The fingering instability due to the difference in viscosities of the two materials gave rise to early breakthrough of the core material and non- uniform skin layer thickness. The core material was also used as tracer material for flow visualization of the injection molding process. The V formation near the wall as well as the mushroom effect, previously predicted, was observed.
Improving Polyethylene Performance - The Use of Metallocene Catalysed Polyethylene in Injection Moulding
M.J. Murphy, P.B. Kelly, G.M. McNally, M.P. Kearns, May 2000
A range of medium density, metallocene catalysed polyethylenes (mPEs), and conventional polyethylenes (PEs) were injection moulded using different mould cooling conditions. The results for the metallocene polyethylenes show significant improvements in impact and tensile performance. Increases of over 200% in tensile elongation for metallocene PE resins over the conventional PE resins were recorded. D.S.C. analysis shows the metallocene PE resins to be more crystalline in nature than the conventional polyethylenes.
Orientation Recovery in Biaxially Oriented Amorphous Polymer Films
C.C. Chau, W. LaFollette, May 2000
The dimensional recovery of biaxially oriented polystyrene and high impact polystyrene films was found to follow dual second order kinetic processes that took place in parallel. The early stage of the recovery involved major dimensional changes with a high rate constant and is likely related to the recovery of main chain orientation. The later stage process gave smaller dimensional changes with a low rate constant and is not directly related to the main chain orientation. This study indicated that the orientation in amorphous polymer films could be examined by understanding the kinetics of thermal recovery.
On-Line Material Characterization during Extrusion of Recyclates
Thomas Schubert, Gottfried W. Ehrenstein, May 2000
Unknown properties of recycles are the problem in the field of recycling thermoplastics. The off-line determination of selected properties (basicpolymer, colour and mechanical properties) is not sufficient to qualify recyclates. Important for the characterization is an almost complete knowledge of the material properties when producing recyclates that are supposed to be competitive as construction materials. Therefore the implementation of tools for the detection and assurance of material properties on-line during extrusion is a promising conception. This presentation shows and discusses the basic ideas of on-line property determination, the achieved results of material determination, and the resulting process control.
Evaluation of the Interfacial Tension between a Low Molar Mass Liquid Crystal and Solid Polymers
Renato Norio Shimizu, Nicole Raymonde Demarquette, May 2000
The surface tension of a low molar mass liquid crystal (LMMLC) was measured as a function of temperature (56.0°C to 79.5°C), using the pendant drop method. The surface tension presented a behavior described by two distinct curves for the different phases (isotropic and nematic). Also the contact angles of LMMLC on plates of PS and of a liquid crystal polymer were measured at different temperatures (from 62.4°C to 89.0°C). The angle presented a discontinuity nearby the nematic to isotropic transition temperature when measured on PS, whereas it remained constant on the LCP. The interfacial tension between the LMMLC and the polymers were estimated.
Influence of Process Parameters on the Phenomenon of Stress Cracking during Hot Plate Welding
H. Potente, J. Schnieders, May 2000
Heating experiments were carried out in order to investigate the significance of the different process parameters on susceptibility to stress cracking. With the help of wetting tests, different crack lengths were generated in the heated sheet and subsequently compared with the various process parameters by means of multiple regression analysis. Another focal point is the estimation of the normal stress difference (?x – ?y) at each point of the specimen by means of 2D photoelastic stress analysis. In both cases the marked correlations between the process parameters and the phenomenon of stress cracking are recognisable, and the results can be used to minimise stress cracking.
Structure-Property Relationship in Poly(phenylene sulfide)(PPS)/Polyethylene Blends-Effect of Metallocene Catalyzed Polyethylene
Bo Sun Lee, Byoung Chul Chun, May 2000
In this investigation, blends of poly(phenylene sulfide)(PPS) with two types of polyethylene such as linear low density polyethylene(LLDPE) and metallocene catalyzed polyethylene(MPE) were prepared by melt blending. First, rheological behavior was determined using a capillary rheometer. The melt viscosity of PPS/LLDPE and PPS/MPE blends was low when PE was a dispersed phase. However, when PPS was a dispersed phase, increased melt viscosity was observed. This tendency was similarly observed in mechanical properties such as percent strain at break and notched Izod impact strength. Also, the mechanical behavior of PPS/LLDPE and PPS/MPE blends showed negative deviation from the rule of mixtures relationship when PE was a dispersed phase. But the negative deviation for PPS/MPE blend was less than that for PPS/LLDPE blend. Also, the dispersed phase morphology was analyzed using scanning electron microscope(SEM).
Factors Influencing the Sorting Efficiency of Commingled Post-Consumer Bottles Using an Automated Sorting System
Robert Dvorak, Edward Kosior, Pio Iovenitti, Syed Masood, May 2000
This paper examines the effects of high throughput rates in a spectroscopic bottle sorting system, on the purity of PET and HDPE end-products as well as other key factors such as an increase in material loss, decrease in % material yield and the need for extra manual sorting staff at higher throughput rates. Increasing the throughput rate of a wide belt bottle sorting system from 1,000 kg/hr to 2,000 kg/hr decreased the purity of HDPE by 17% and that of PET by 2%. Material loss had more then doubled for PET from 12% to 32% and for HDPE increased from 8% to 9%. The end-product yields for HDPE and PET had decreased by 3% and 8% respectively. One of the key improvements to the sorting operation was the development of an automated sensor cleaning system, which uses an automated film rotating mechanism.
Relative Dimensional Change of Various Nylon Products Due to Moisture Absorption
Steve Gerbig, Bonnie Richter, Brian Helfrich, May 2000
In plastic materials published data, moisture absorption is almost always expressed in terms of percent weight gain. While this information is important for comparison purposes, it doesn't truly relate to the design engineers' application and use of these materials. This study will quantify and compare the relative dimensional changes which occur in parts as they are exposed to a humid environment and move from the dry-as-molded state toward saturation using nylon types 6, 66 and 46.

This item is only available to members

Click here to log in

If you are not currently a member,
you can click here to fill out a member application.

We're sorry, but your current web site security status does not grant you access to the resource you are attempting to view.

  Welcome Page

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net