SPE Library

The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 

Search SPE Library
After Date: (mm/dd/yy)  
Sort By:   Date Added  ▲  |  Publication Date  ▲  |  Title  ▲  |  Author  ▲
= Members Only
Conference Proceedings
Simulative Evaluation of the Temperature Influence on Different Types of Pre-Distributors in Spiral Mandrel Dies
Nafi Yesildag, Christian Hopmann, May 2017
Thermal inhomogeneities in spiral mandrel dies, which occur especially in the pre-distributor, can lead to an uneven flow distribution despite a rheologically optimized design of the die. Against this background an integrative thermal and rheological flow simulation has been developed at the IKV, in which the whole pre-distributor can be modelled non-isothermally. The simulation takes both the non-linear flow behavior of the melt and the thermal phenomena in the die material into account. In this contribution, the developed simulation model is used to evaluate and compare the temperature influence on the melt distribution in three different types of pre-distributors. These are a 23-pre-distributor of a radial spiral mandrel die, a 24-pre-distributor of an axial spiral mandrel die and a star pre-distributor with vertical redirection. The simulations show that in case of the 23- and 24-pre-distributor, both the external tempering of the die and the dissipative shear heating lead to an uneven temperature distribution in the melt and thus cause an inhomogeneous melt pre-distribution. In case of the star pre-distributor, the die tempering has no significant effect on the flow distribution. However, the dissipation leads to an uneven heat-up of the melt in the area of the redirection, which results in an uneven melt flow at the outlets of the pre-distributor. In the next step, thermal design measures are introduced into the pre-distributors in order to homogenize the flow rate distribution at the outlets of the pre-distributors. By integrating heater cartridges, brass inserts and insulating gaps into the die, a more homogeneous flow rate distribution at the outlet of each pre-distributor can be achieved.
Improved Injection Molding of Ultra-High Molecular Weight Polyethylene Using Supercritical Nitrogen
Galip Yilmaz, Thomas Ellingham, Lih-Sheng Turng, May 2017
Ultra-high molecular weight polyethylene (UHMW-PE) was injection molded using a microcellular injection molding (MIM) process to introduce supercritical nitrogen (SC-N2) into the melt to decrease the viscosity of the polymer and improve processability while reducing degradation. Solid and foamed parts were produced. Rheological tests indicated that a viscosity reduction during processing decreased the material’s tendency to degrade during injection molding. Although the SC-N2 processing did not improve the tensile strength of the molded parts, it significantly improved the processability of UHMW-PE via injection molding. Micro-computed tomography (µCT) images illustrated the internal structures of the parts and revealed sink marks in the solid formed SC-N2 processed samples, even when packing pressure was applied.
The 3D Viscoelastic Simulation of Multi-Layer Flow inside Film and Sheet Extrusion Dies
Kazuya Yokomizo, Makoto Iwamura, Hideki Tomiyama, May 2017
In this study, the multi-layer polymer flow inside film and sheet extrusion dies was researched by the multi-layer experiment and the simulation. From the experimental results, the phenomenon that the distribution of each layer changes severely near the edge was founded. That phenomenon was attributed to the second normal stress difference of viscoelastic fluid such a polymer. Therefore the multi-layer flow simulation was conducted by using a viscoelastic model which can calculate the normal stress effect. It showed that the simulation results of the distribution of each layer were well agreement with the experimental results.
Man-Made Cellulose Fiber Reinforced Polypropylene – Characterization of Fracture Toughness and Crack Path Simulation
Jan-Christoph Zarges, Maik Feldmann, Hans-Peter Heim, Paul Judt, Andreas Ricoeur, May 2017
This investigation focuses on the fracture toughness of injection molded man-made cellulose fibers reinforced composites with PP as their matrix and 30wt% fiber content. The influence of the fiber orientation and the addition of a coupling agent on the fracture toughness was determined using SEM and a micro computer tomography. It was verified that a reinforcement with man-made cellulose fibers leads to significantly higher values of the critical Jc-integral in comparison to glass fiber reinforcement. A notch direction parallel to the flow direction shows higher values which is a result of less local strains around the crack path, as well as of a higher amount of fiber pull-outs in the fractured surface. The coupling agent MAPP creates stronger fiber-matrix adhesion, which results in a decreasing of the Jc-values due to less fiber pull-outs. The determined values of the critical Jc-integral and the crack deflection due to the materials anisotropy were used to apply a crack deflection criterion. The resulting calculated crack paths achieved a good approximation to the experiments.
Measurement and Modeling of Flow Behaviour for Melt Blown Polymer Melt in Very Wide Deformation Rate Range
Martin Zatloukal, Jiri Drabek, Mike Martyn, May 2017
In this work, linear PP Borflow HL504 FB, having melt flow rate equal to 450 g/10min, has been characterized by using rotational and capillary rheometry as well as by the instrumented injection molding machine. The measured data, that shows first as well as second Newtonian plateau, were consequently fitted by four conventional models (Cross, Carreau, Generalized Quemada and Carreau-Yasuda models) as well as by two novel viscosity models (modified Quemada and Carreau models) suggested here for the first time. It has been revealed that the modified 5-parametric Quemada model shows the highest flexibility to describe the flow viscosity curve for the investigated polymer melt in comparison with the other utilized models.
Applied Rheology for Characterization of Nanofiber Based Filters
Martin Zatloukal, Wannes Sambaer1, Dusan Kimmer2, May 2017
Full 3D polydisperse particle filtration modeling at low pressures has been performed for a polyurethane nanofiber based filter prepared via electrospinning process in order to more deeply understand the filter clogging and the cake formation. In this work, realistic SEM image based 3D filter model, transition/free molecular flow regime, Brownian diffusion, aerodynamic slip, particle-fiber and particle-particle interactions together with a Euclidian distance map based methodology to calculate the pressure drop have been utilized. Model predictions have been compared with relevant experimental data in order to validate the used assumptions, methodologies and numerical scheme. The effect of particle-particle as well as particle-fiber interactions on the nanofiber based filter efficiency, pressure drop and the quality factor during the filter clogging has been investigated in more detail.
On the Role of Extensional Rheology, Elasticity and Deborah Number on Neck-In Phenomenon during Flat Film Production
Martin Zatloukal, Tomas Barborik, Costas Tzoganakis, May 2017
In this work, viscoelastic, isothermal extrusion film casting modeling utilizing 1D membrane model and modified Leonov model was performed in order to understand the role of planar and uniaxial extensional viscosities, extensional strain hardening, Deborah number and die exit stress state (captured here via the second to first normal stress difference ratio –N2/N1). It has been found that the neck-in can be expressed via simple set of dimensionless analytical equations utilizing all above mentioned variables, and thus providing detail view into complicated relationship between polymer melt rheology, die design, process conditions and unwanted neck-in phenomenon.
Microstructural Analysis of Amorphous and Crystalline PET in Presence of Antiplasticizers
Shahab Zekriardehani, Saleh A. Jabarin, Maria R. Coleman, May 2017
Additives such as low molecular weight diluents (LMWD) can be added at low concentrations to poly (ethylene terephthalate) (PET) to improve barrier properties significantly. Orientation during PET processing, on the other hand, causes strain induced crystallization which can increase the diffusion pathway and lessen the amorphous chain mobility. The objective of this work is to analyze the effect of LMWD additives, such as dimethyl terephthalate (DMT) and dimethyl isophthalate (DMI) and strain induced crystallization on the free volume and microstructure of PET and correlate this with barrier properties. Films made of pure PET and PET/LMWD using single screw extruder were oriented using Long Extensional Tester at a relatively fast rate of 200%/s (4 in/s) to prevent any relaxations in the rubbery stage. TGA and FTIR were used to quantify the concentration of DMT and DMI in the PET matrix. Positron Annihilation Lifetime Spectroscopy (PALS) and WLF equation showed a reduction in the fractional free volume (FFV) after strain induced crystallization and introducing additives to the amorphous PET. Dynamic Mechanical Analysis (DMA) experiment was performed to study the long/short range chain motions. ß relaxation studies showed more restriction in the chain motion in presence of additive or crystallization in PET matrix which affect the diffusion process. Permeation measurements were conducted using different gases (O2 and CO2). Permeation studies demonstrated the lowest permeability for oriented PET with 3 wt.% DMT and the highest for amorphous PET.
Sensitive Mechanochromisms Based on a Polymer Bilayer Structure
Songshan Zeng, Dianyun Zhang, Wenhan Huang, Zhaofeng Wang, Stephan G. Freire, Andrew T. Smith, Emily Y. Huang, Helen Nguon, Xiaoyuan Yu, Luyi Sun, May 2017
We have designed a series of mechanochromic devices inspired by nature with the capabilities of changing transparency and “switching on/off” luminescence in response to mechanical stimuli. The key to accomplish these excellent optical properties is to control strain-induced surface engineering, that is, the longitudinal cracks opening and transverse invaginated folds. All of these devices are comprised of a rigid thin layer atop polydimethylsiloxane (PDMS) based elastomer, which can be facilely and quickly fabricated. For transparency change mechanochromism, the folds and cracks with excellent light trapping and scattering capabilities can endow high opaqueness to the originally highly transparent samples. The evolution of crack opening and fold–ridge mechanisms are captured through finite analysis that incorporates damage and cracks in the rigid thin layer. For luminescent mechanochromism, the strain-tunable cracks on the UV shield layer act as “gates” to mediate the traveling of UV light to “switch on/off” the luminescence of mechanochromism. This device exhibits a remarkably high strain responsive sensitivity, demonstrating an excellent sensing capability for detecting mechanical failure or damage. All the mechanochromisms also show outstanding durability and reversibility.
Influences of Molecular Structure on the Rheological Properties and Foamability of Modified Polypropylene
Chad Zeng, Yan Li, Zhen Yao, Kun Cao, May 2017
This work combined the grafting maleic anhydride(MAH) onto polypropylene (PP) and the coupling reaction between diamine and MAH grafted PP (PP-g-MAH) into a single step through a twin screw extruder. Detailed molecular weight analysis, rheological characterization and foaming tests were conducted subsequently. The investigation indicated that the concentration of reagents plays a key role in control of the chain structure. By the combination of SEC and rheological analysis, the optimum amount of MAH and diamine for preparing LCB-PPs is decided. However, the optimum peroxide loading during branching modification is not clear and need further evidence. To solve this problem, a foaming test was carried out to assess the performance of the modified PP with different peroxide loading. The results demonstrate that an intermediate level of modification (peroxide concentration, 0.2-0.4 wt%) is already sufficient for the optimization of foaming process.
Long-Term Performance of Thermoplastic Polyolefin Pipe Material Characterized by Cracked Round Bar Test
Chunbo Zhang, Yi Ma, Wenbin Liang, Shuai Wang, Kejian Wang, Yinling Zhang, May 2017
The long-term performance is critically important for safety assessment of pressurized pipe materials. In the present work, cyclic cracked round bar (CRB) test was utilized to investigate the slow crack growth behavior in a compounded polyolefin pipe material exhibiting flame retardant and antistatic properties (FRTPO). The applicability of the CRB method to evaluate the long-term performance of compounded polyolefin material was also discussed and validated. We demonstrate, for the first time, that the PP-based FRTPO pipe compound displays, surprisingly, excellent long-term performance comparable to that of commercial PE100 pipe material.
High Gas Barrier Materials with Multilayer Morphology for Packaging Applications
Guojun Zhang, May 2017
Multilayer films are widely used in packaging industry to fulfil different applications. It is well known that multilayer structure is essential for high gas barrier packaging using EVOH, because moisture has negative effects on EVOH’s barrier properties [1, 2]. In order to effectively use EVOH in barrier applications, usually a moisture barrier layer and a tie layer are required [3, 4]. In this study, specially prepared polymeric compounds based on EVOH and polyolefin with good dispersion, proper compatibility/incompatibility and viscosity match are prepared. These special materials all yield a morphology that is similar to multilayered structure after the resins are extruded into thin film. Different from some previous researches [5, 6, 7], our technique involves with a precompound process, which ensure the multilayer morphology to form after resins are extruded into thin films. With multilayer-like morphology inside, EVOH phase is extended and protected. Therefore, good gas barrier (both OTR and WVTR) properties agreeing with series model calculation are reported for all film samples. These materials with multilayer-like morphology have also shown decent adhesion with different PE reins, so 3- layer instead of 5-layer films are successfully fabricated, which are applicable in barrier packaging applications in terms of barrier and optical properties. It is expected that these special materials with multilayer-like morphology inside can be used as monolayer films or a layer in multilayer structures to enhance the barrier performance as well as process flexibility of EVOH resins.
Enhanced Hydrophobicity of Electrospun Polyvinylidene Fluoride-Co-Hexafluoropropylene Membranes by Introducing Modified Nanosilica
Lingli Zhang, Xingxing Shi, Xiangfang Peng, BinYi Chen, Tairong Kuang, May 2017
Electrospun nanofiber membranes consisting of Polyvinylidene fluoride-co-hexafluoropropylene blended with nanosilica nanocomposites were successfully prepared using electrospinning technique in this paper. The neat PcH, PcH-nanosilica, and Pch-modified nanosilica nanocomposite membranes were characterized by water contact angle, Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM), respectively. Results showed that the addition of nanosilica increase the hydrophobicity of the membranes. Blended with 5 wt% modified nanosilica, the water contact angle of membrane could reach up to a maximum value (136°). Membrane morphological analysis presented that the resultant membrane had the thinnest diameter and roughness surface, which confirmed the enhancement of hydrophobicity of the membrane.
Foaming Behavior of the Multilayered PS/PA6 Blend and its Anisotropic Mechanical Properties
Cailiang Zhang, Li Cong, Long Wang, Lianfang Feng, May 2017
Polystyrene (PS)/Polyamide 6 (PA6) film with highly-oriented and aligned PA6 ribbons in PS matrix is prepared by the tape extrusion. Using carbon dioxide (CO2) as a blowing agent, the foaming behavior of this multilayered PS/PA6 film was studied at foaming temperature lower than melting temperature of PA6 and higher than transition glass temperature of PA6. The results show that the cell size of the obtained foam is smaller than that of pure PS foam because the solid PA6 ribbon not only acts as heterogeneous agent but also can restrict cell growth. Moreover, the cell is oriented along the direction perpendicular to the ribbons direction, which exhibits anisotropic mechanical properties.
Development of High Thermal Insuation Polypropylene Foams Blown in Injection Molding with Mold Opening
Jinchuan Zhao, Guilong Wang, Qingliang Zhao, Chul B. Park, May 2017
Polypropylene (PP) foams with a low thermal conductivity (less than 40 mW/m·K) and a low density (0.1-0.2 g/cm3) were fabricated by the foam injection molding technology with mold opening while using CO2 as a blowing agent. PTFE fibrils manufactured by in-situ fibrillation using a co-rotating twin screw extruder were used to improve the melt strength and the strain hardening property. The crystallization behavior and the rheological properties were studied, to demonstrate that the dispersed PTFE fibrils effectively enhanced the crystallinity and, thereby, increased the melt strength, and induced a strain hardening behavior. When foamed in injection molding, the fibrillated PTFE containing PP showed much more improved foaming behavior. The thermal conductivity mainly depended on the expansion ratio of foam, although the quality of the cells (i.e., the size and uniformity) also influenced those properties.
Blends of Poly(Propylene Carbonate)/Hydrogenated Nitrile Butadiene Rubber: Morphology and Thermal Properties
Ahmad Zohrevand, David Lepage, Dominic Rochefort, Mickaël Dollé, Arnaud Prebé, May 2017
The morphology and thermal properties of poly(propylene carbonate) (PPC) and hydrogenated nitrile butadiene rubber (HNBR) blends obtained via a meltmixing process were studied. Morphology of the blends with different compositions was observed by scanning electron microscopy (SEM). Differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA) were performed to study miscibility and thermal stability of the blends. SEM image showed that PPC/HNBR blends are phase-separated at the microscopic scale and each phase showed characteristic Tg in DSC. The addition of HNBR is demonstrated as a mean to significantly improved thermal stability of PPC phase under air atmosphere.
Carbon Nanofibers Preparation from Pan Nanofibers by Cotton Candy Method
Akihiro Tada, Jitlada Boonlertsamut, Supaphorn Thumsorn, Masayuki Okoshi, Hiroyuki Inoya, Hiroyuki Hamada, Yoshifumi Aoi, May 2017
The cotton candy method was used for preparing polyacrylonitrile (PAN) nanofibers. Molecular weight (MW) of PAN was 15x104 and 20x104 g/mol. The PAN was dissolved by N-Methyl-2-pyrrolidone (NMP). The concentration of PAN solution was varied at 3-10 wt%. The PAN solution was spun through the plunger at the speed of 100 and 1,000 rpm at air pressure of 0.2 MPa. The collecting distances were set at 20, 40, 60 and 80 cm. Morphology of the fibers was observed by scanning electron microscope. The PAN nanofibers were successfully formed at 10 wt% of PAN MW 15x104 g/mol and 5wt% of PAN MW 20x104 g/mol. The fiber diameter decreased when increasing the collecting distances. The average fiber diameter was around 400-650 nm. The glass transition temperature and the oxidative degradation increased when increased the concentration of PAN. Raman spectrometry of carbon nanofiber by PAN nanofibers from CoCaM showed high crystallinity. and stretched strongly and alignment.
Evaluation of Various Weight Reduction Strategies on Mechanical Properties and Part Performance
Matthew T. Thompson, May 2017
Multiple options exist for decreasing the weight of injection molded automotive components. Each option offers unique advantages and limitations regarding weight reduction potential and mechanical performance of the final part. Advanced Composites has evaluated the effect of several strategies, including composite density reduction, wall thickness reduction, and foaming, on the performance of injection molded test specimens and parts made using a diagnostic tool. Densities and part weights were obtained as well as tensile, flexural, and impact properties. In the case of density reduction, the removal of mineral filler alone proved insufficient to maintain mechanical performance, indicating the need for optimization of the material formulation. The characteristics of foamed and thin-wall parts were also examined and demonstrate the need for careful consideration of part and material design.
Automotive Prototype from Recycled Carbon Fiber Reinforced Recycled Polyamide Composite
Omar Faruk, Birat KC, Jimi Tjong, Mohini Sain, May 2017
Automotive industries are promoting and working to improve the sustainability of their vehicles by using materials, which includes increasing of recycled and lightweight materials. Increasing recycled materials is to improve resource efficiency by recycling consumer and industrial waste and increasing lightweight materials is to improve vehicle fuel efficiency by expanding the use of lightweight materials. An automotive prototype (oil pan) is developed from 100% recycled material (20 wt% recycled carbon fiber with 80 wt% recycled polyamide) to improve fuel efficiency by light weighting and as well as sustainability. The material properties and processing parameters are compared to current production part. A global thermal cycling durability test of prototype part has been performed where the continuous high temperature is mainly concerned. It is found that the prototype part is 15% lighter than current part and as well as lower processing time. The prototype part has successfully passed the global thermal cycling durability test.
Effects of Graphite Selection on Thermally Conductive Compounds for LED Lamp Heat Sinks
Daniele Bonacchi, May 2017
Thermally conductive compounds are viewed as potential replacements of metal based heat sinks in automotive and non-automotive LED lamp applications. Graphite is certainly the main candidate for thermally conductive applications that tolerate electrical conductivity for their high efficiency and reduced costs. In this article we demonstrate that the introduction of graphite increases substantially the thermal conductivity especially along the plastic flow (in plane) direction. We have tested several commercially available graphite grades in polyolefin model polymers and have seen that the crystallinity, the average particle size and the aspect ratio are the three main factors that promote thermal conductivity. In this comparative study we have also tested special high aspect ratio graphite that delivers high thermal conductivity at low loadings giving an advantage in terms of weight reduction.

This item is only available to members

Click here to log in

If you are not currently a member,
you can click here to fill out a member application.

We're sorry, but your current web site security status does not grant you access to the resource you are attempting to view.


How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net