SPE Library


The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 


Search SPE Library
    
    




Sort By:  Date Added   Publication Date   Title   Author

Conference Proceedings

Prediction of Temperature Profiles across Coating and Substrate in the Nip
Yves Trouilhet, Barry A. Morris, May 2000

An unsteady-state, one-dimensional heat conduction model is used to calculate the temperature profiles in the melt and the substrate(s) when they come into contact in the nip of the extrusion coating or lamination process. The model helps answer such questions as: • Is the melt totally quenched in the nip? • Will the substrate(s) be exposed to temperatures above which shrinkage occurs? Will the temperatures promote post-crystallization? The answers to these questions aid in the understanding of adhesion, curling and optical problems in extrusion coating.

High Molecular Weight Flexibilizers in Low Smoke Flame Retardant PVC Compounds
E.R. Griffin, May 2000

Ethylene copolymer resin (ECR) modifiers play an important role in low smoke PVC. As high molecular weight flexibilizers these resins reduce smoke and add strength and low temperature flexibility. This combination allows compounders to increase the flame-retardant additives without compromising strength or flexibility or by adding liquids which increase smoke. This paper is presented to demonstrate these attributes versus liquid plasticizers used in PVC compounds.

A Novel Ionomer for Nylon Modification
Richard T. Chou, May 2000

A new family of Surlyn® ionomers containing reactive functional groups is being developed for polymer modification, e.g., modifying nylon for blow-molding applications. Compared to existing ionomers, the new ionomers exhibit a higher degree of compatibility with nylon. One of the unique features of the new modifier is that the new ionomers can be dispersed in nylon in an extremely fine particle size and narrow size distribution. This has a profound effect on both the melt rheology and the mechanical properties of the modified nylon. Most significantly, the new ionomer imparts a truly shear thinning melt viscosity of the modified nylon 6. The paper discusses the dispersion of the new ionomer in nylon 6 as analyzed by SAXS and TEM and the melt rheology behavior of the modified nylon 6 and briefly highlights the effectiveness of the new ionomer to modify nylon 6 for the demanding blow-molding applications.

The Creep Behavior of Poly(ethylene terephthalate) Bottles
Prakash S. Sonti, Saleh A. Jabarin, Michael R. Cameron, May 2000

Room temperature viscoelastic behavior of PET beverage containers was studied. Internal pressures result in an increase of the container volume. By assuming a cylindrical geometry, stresses can be computed and linear strains can be estimated from the volumetric changes. A time-dependent creep compliance was determined for 2-L freestanding containers under various internal pressure loads. These values match favorably with uniaxial creep measurements. From isochronous plots, the viscoelastic behavior is shown to be linear over a limited range of pressures. The creep curves show all the characteristics of simple linear viscoelastic models such as instantaneous elastic response, retarded elastic response and permanent deformation.

Measurement of Layer Deformation in Coextrusion Using Unique Feedblock Technology
Joseph Dooley, Kevin Hughes, May 2000

Multilayer coextrusion is a process in which two or more polymers are extruded and joined together in a feedblock or die to form a single structure with multiple layers. These layers should be uniform in thickness across the structure for best performance. However, layer thickness non-uniformities have been observed in many coextruded products. Previous work has shown these layer thickness variations can occur due to viscosity differences between the polymers in the layers and/or elastic effects that introduce secondary flows. The objective of this work was to experimentally measure the secondary flow velocities in a square channel using a unique coextrusion feedblock that produces annular rings instead of planar layers.

Enhanced Performance via Ester Lubrication of Rigid PVC Formulations Modified with Chlorinated Polyethylene
L.J. Effler, N.R. MacMurdo, G.R. Marchand, May 2000

In traditional calcium stearate/paraffin wax systems, higher levels of wax leads to lower melt temperatures, higher gloss, and higher impact properties of the extruded sheet or profile. Unfortunately, higher levels of wax also leads to longer PVC fusion times, and an increased tendency to develop die plate out. However, recent work with ester lubricant systems, in PVC formulations using chlorinated polyethylene, have shown that lower extrusion temperatures, pressures and torque can be achieved without sacrificing fusion time or increasing the risk of die plate out. All while maintaining or enhancing gloss and impact properties.

Electrospun Nanofibers of Electronic and Photonic Polymer Systems
C. Drew, X. Wang, K. Senecal, H. Schreuder-Gibson, J. He, S. Tripathy, L. Samuelson, May 2000

Electrospinning employs strong electric fields to create nanometer scale fibers. The fibers are collected as a non-woven fiber membrane with a very large surface area to volume ratio. Sulfonated polystyrene, enzymatically synthesized polyaniline and blends thereof, and dye-sensitized composite polymeric systems were electrospun and studied to optimize fiber formation. It is expected that these types of electrospun materials will find potential use as new lightweight electronic and photonic materials in numerous device applications.

A Study on the Poly(ethylene naphthalate)/Poly(ethylene terephthalate)-Poly(ethylene naphthalate) Copolymer Blends
Whanki Kim, Ho-Jong Kang, May 2000

Poly (ethylene naphthalate)/Poly (ethylene naphthalate)-poly (ethylene terephthalate) copolymer [PEN/(PEN-PET)] blends were investigated. It was found that introducing PEN-PET copolymer to PEN/PET blending system instead of using PET caused the lowering of transesterification reaction in melt mixing as compared to PEN/PET blends. As the duration of mixing gets longer, the transesterification difference between PEN/PET blends and PEN/(PEN-PET) blends becomes more evident. The increase of transesterification in PEN/(PEN-PET) blends with increasing mixing time resulted in the decrease of melting temperature, while glass transition temperature increased. In addition, our time resolved light scattering data shows that slower crystallization could be obtained in PEN/(PEN-PET) blends as compared to PEN/PET blends.

Study of Polypropylene Degradation in a Co-Rotating Twin Screw Extruder
Eric Tizon, David Bigio, Leo Kasehagen, May 2000

Screw design, injection site and operating conditions are critical parameters which influence peroxide injection efficiency during PP vis-breaking. A visual study in a clear barrel extruder was performed with water and corn-syrup to simulate the mixing of a low viscosity ratio system. Liquid injection of peroxide into PP was then performed in a 30 mm COTSE and compared to the normal pre-mixed peroxide method. Operating conditions were found to greatly influence degradation by shear and injection efficiency.

Evolution of the Anisotropic Structure of Poly(phenylene vinylene) Films with Stretching
Runqing Ou, Robert Samuels, Xingwu Wang, Richard Gregory, May 2000

The evolution of the anisotropic structure of PPV films with stretching was studied by three characterization techniques: three dimensional refractive indices using waveguide, infrared dichroism and flatplate x-ray photography. The results show that the cast PPV film without stretching has a highly planar structure. One way stretching converts the film to a uniaxial structure.

Thermal Analysis during Epoxy Casting Process for Joint Units of High Voltage Cable
Hon Seong Koo, Seong Jin Park, Won Bae Kim, Cheol Min Kim, Young Kil Ha, Young Seong Kim, May 2000

The temperature distribution and the degree of cure in an epoxy system during the casting process, which is used in the connecting unit of high voltage cable, have been simulated using the FE solver of MARC including the programmed routines. The curing kinetics of the epoxy system used in the casting process was determined by DSC test, which was used as material input data of the developed program. To verify the developed simulation program, we have compared the simulated results for the simple model problem with those simulated by C-MOLD. The simulation results of real epoxy system for the connecting unit of the 400 kV cable, which is currently under development, are also presented for various processing conditions.

Development of 0.5 mm Super SO DIMM Connector with Computer Simulation Tools
Shiu-Chun Lin, Jian-Ming Yang, Wen-Li Yang, Rong-Yeu Chang, Li-Shen Chen, Chun-Shin Huang, May 2000

Super Small Outline Dual Inline Memory Module (SO-DIMM) is widely employed in the design of next generation notebook PC and portable electronic devices. The maximum warpage of the injection-molded connectors are required to be a low as 0.1mm in order to be compatible with the SMT (Surface Mount Technology) process. Design of Experiment method and computer simulation were utilized to investigate the complex interaction among final dimensions, mold design, grade of liquid crystalling polymer and injection molding conditions. By using the L9 orthogonal table, the most critical factor affecting the warpage was identified. The effects of other factors were also discussed.

A Fast Approach to Automotic Runner Balance
Kun-Chih Chen, Rong-Yeu Chang, David C. Hsu, Alice S. Lin, Kelly Lu, May 2000

Runner balance is one of the most important issues to be addressed for multi-cavity mold in the mold design phase. Poor runner sizing will lead to Christmas tree filling pattern and hence different residence time of plastic melt on each cavity. This leads to excessive packing pressure on small cavity and part weight variation. This problem becomes more crucial for the so-called family mold. In this work, the concept of flow balance index (FBI) is proposed to address this problem. Real industrial cases are studied by this new approach and are verified by molding trial results.

A Novel Computer Simulation Technology for the Cooling Analysis of Complex Injection Molded Parts
Rong-Yeu Chang, Shin-Hui Huang, Wen-Li Yang, I.Y. Chen, C.C. Lai, May 2000

Cooling analysis has been the biggest obstacle in the simulation of the injection molding process, mostly due to the loss of convergence and enormous computation efforts encountered in the conventional boundary element method (BEM) approach. However, cooling analysis is not only essential in designing cooling channel layout, but also in optimizing the overall accuracy of filling, packing and warpage analyses. Fast Finite Element Method (FFEM) has been proved to provide excellent computation efficiency over the conventional BEM. A case study of complex car panel with FFEM is discussed in this paper.

Cooling of Extruded Plastic Profiles
L. Placek, J. Svabik, J. Vlcek, May 2000

For the proper design of cooling equipment and its dimensions in profile extrusion, it can be very useful to know the temperature fields inside the profile. To be able to understand the cooling process, a physical - mathematical model of heat transfer in the extruded profile must be used and the temperature field solved by an analytical or numerical method. There are only very few problems that can be solve analytically. We can say that some one-dimensional problems (not all) and very few two-dimensional problems can be solved analytically. For example, it is possible to solve a problem of cooling an extruded film or a thin plate. If the profile shape is more complicated, it is necessary to use a numerical method. One peculiar variable in all heat transfer simulations is the heat transfer coefficient. Its setting is important for the absolute results of the simulations. On the other hand, an approximate, but close, value of such a coefficient can cause some errors in the absolute temperatures but will still show the relative temperature distribution across the profile. In the majority of problems, the overall picture of the process is more important than knowing the exact temperature in a certain position. If a designer has a good picture about the cooling process, he/she can easily design the lengths of calibrators, their appropriate placing, the length of the cooling bath and so on. It is also possible to judge where the walls of the profile will probably bend. The designer can also decide what should be the cooling conditions, about the possible placement of infrared heaters, the length of the water bath and so on. In the case of a complicated profile it is almost impossible to imagine the temperature distribution inside the profile. In profile extrusion, any uneven cooling can cause bending, if not collapsing, of the profile. Therefore, knowing the relative temperature distribution may be more important than knowing exactly the temperature values. This presentat

Extrusion Blow Molding Process-Development and Optimization
Karel Kouba, Petr Novotny, Peter Gust, May 2000

This paper presents the application of CAE tools for a Blow Molding process. A description of the underlying theory is provided. The predicted thickness distribution for an example part is shown to have a good correlation with experimental measurements. The approach to parison thickness optimization is also demonstrated.

Specific Features of Dynamic Vulcanization and Properties of Thermoplastic Elastomers
Eduard V. Prut, Natalia A. Yerina, May 2000

The macrokinetic of dynamic vulcanizetion was studied. Criteria for selection a cross-linked system and condition for conduction one-step dynamic vulcanizetion were suggested. The influence of the ratio of the basic components, the content of plasticizer and mineral filler on mechanical and processing properties of thermoplastic vulcanizates (TPV) was investigated. The ageing of TPV was connected with recrystallization of polypropylene (PP). The mechanism of TPV's deformation is proposed.

Practitioner Training Program for Troubleshooting Injection Molded Part Defects
Amy Schickline, Jennifer Schmidt, May 2000

The objective of this paper is to document our study of injection molded part defects. The study of the defects is necessary in developing a training program for technicians and engineers. With this program one will be able to understand the causes of the defect and the steps required to eliminate it.

Behaviour of Fibre-Bearing Syntactic Foams in Compression and Flexure
C.S. Karthikeyan, Kishore, May 2000

The comparative performances in three point bending and compression of syntactic foams comprising of epoxy resin and glass microballoons with the inclusion of chopped glass fibres of two different resin compatibility namely, epoxy and phenolic, are reported. The data showed that the compressive strength values differ marginally. As regards the flexural strength it increases for a change from epoxy to phenolic. When the properties of third syntactic foam with polyester compatible fibres was examined, it was found that the value was higher than the epoxy counterpart. This was attributed to the difference in the procedural route adopted for fabricating this latter foam.

Optimizing Injection Molding towards Multiple Quality and Cost Issues
Donggang Yao, Byung Kim, Jaehong Choi, Robert Brown, May 2000

Injection molding part designers are frequently faced with multiple quality and cost issues. These issues are usually in conflict with each other, and thus tradeoff needs to be made to reach a final compromised solution. Since evaluation of part quality and cost via injection molding simulation is very time-consuming, implementation of a conventional multi-criteria optimization procedure to injection molding problems is economically unfavorable. However, many injection molding problems dealing with multiple quality and cost issues can be modeled as constrained problems. By introducing a concept of Penalized Total Cost, such constrained problems are further simplified into bounded single-criterion problems. The bounded single-criterion problems are then optimized using a direct search-based optimization procedure. Strategies of modeling, transformation and optimization for these problems are discussed in this paper. A case study is provided.










spe2018logov4.png
  Welcome Page

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net