SPE Library

The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 

Search SPE Library
Keyword/Author:
After Date: (mm/dd/yy)  
 
Sort By:   Date Added  ▲  |  Publication Date  ▲  |  Title  ▲  |  Author  ▲
= Members Only
Conference Proceedings
A Heuristic Model For Predicting Three-Dimensional Non-Newtonian Flows In Metering Channels
Christian Marschik, May 2018
Being able to include the shear-thinning behavior of polymer melts in the theoretical analysis of melt-conveying and pressurization generally involves the application of numerical techniques. We have recently proposed a fast and accurate analytical approximation method for predicting the pumping characteristics of power-law fluids in three-dimensional metering channels. Removing the need for time-consuming simulations, this novel theory provides an algebraic throughput-pressure gradient relationship that can be implemented easily in real screw designs. By considering the three-dimensional geometry of the screw channel and the non-Newtonian flow behavior of the polymer melt, our model is a close representation of the actual physical process. Here, we revisit the design of the heuristic model, present further results, and validate the method against additional numerical solutions.
Unified Simulation Of Extrudate Distortion Due To Non-Uniform Exit Velocity And Cooling Shrinkage
Mahesh Gupta, May 2018
Post-die analysis in the polyXtrue software is enhanced to include the effect of cooling shrinkage on extrudate distortion. Extrudate distortion for two different profile dies is predicted. The effect of non-uniform exit velocity as well as that of cooling shrinkage on extrudate distortion is included in the analysis. The extrudate distortion predicted including the shrinkage analysis is compared with the distortion predictions based only upon non-uniform exit velocity. Extrudate distortion due to non-uniform exit velocity is further increased when cooling shrinkage is included in the analysis.
Volumetric To Gravimetric Conversion
Riley Wittmann, May 2018
This capstone project consists of making a gravimetric feeder from a volumetric feeder with a speed-controlled screw. A gravimetric feeder starve-feeds material into an extruder at a constant weight per hour. A lot of extrusion companies use gravimetric feeders because it saves them a lot of money on scrap from inconsistent lines of filament. It also uses Proportional Integral Derivative (PID) controlling to monitor the weight loss and counteracts any feeding inefficiencies. Without using PID and instead using a set speed control, the screw might not feed a constant amount of material. The PID will be implemented into the system using C++ language in the Arduino software. The project will be completed using a starve-feeding hopper, a 165-lb. capacity bench scale, an Arduino Uno kit, a motor shield, and an RS-232 converter.
Effect Of Die Exit Stress State, Deborah Number And Extensional Rheology On Neck-In Phenomenon
Martin Zatloukal, May 2018
In this work, effect of the second to first normal stress difference ratio at the die exit, uniaxial extensional strain hardening, planar-to-uniaxial extensional viscosity ratio and Deborah number has been investigated via viscoelastic isothermal modeling utilizing 1D membrane model and a single-mode modified Leonov model as the constitutive equation. Numerical solutions of the utilized model were successfully approximated by a dimensionless analytical equation relating the normalized maximum attainable neck-in with all above mentioned variables. Suggested equation was tested by using literature experimental data. It was found that approximate model predictions are in a very good agreement with the corresponding experimental data for low as well as very high Deborah numbers. It is believed that the obtained knowledge together with the suggested simple analytical model can be used for optimization of the extrusion die design, molecular architecture of polymer melts and processing conditions to suppress neck-in phenomenon in production of very thin polymeric flat films.
Modeling The Operating Performance Of Melt Filtration In Polymer Recycling
Sophie Pachner, May 2018
This paper addresses the generation of a general valid analytic equation for estimating the initial pressure drop of woven screens in terms of polymer recycling. Therefore we performed numerical CFD Simulations as basis for heuristic modeling. Based on evolutionary heuristic algorithms, we applied symbolic regression in order to determine the pecScreen model. We performed experiments at different melt filtration systems for validation of the model using virgin as well as in-house, post-industrial and post-consumer recycling materials. It turned out that the results of the general valid analytic equation are in good agreement with the experimental determined data, yielding a coefficient of determination (R²) of 0.92.
Modeling Of A Simple Numerical Calculation Methodology To Implement Cross Flows In Extrusion Die Design Based On Network Theory
Bianka Jacobkersting, May 2018
Extrusion dies exert influence on later final product quality. Therefore it´ll make a point the dimensional and die design by using programs for calculation and simulation frequently. For the implementation of product design, it is significant to understand the flow conditions and to be able to predict the flow behavior accurately. Special rheological flow phenomena in the plastic melt as cross flows, which flow perpendicular to the main flow, should be taken into account. This phenomenon is caused by pressure gradients transverse to the direction of extrusion and both the flow distribution and the pressure consumption are influenced in the die. Network theory is a simple numerical method for a holistic one-dimensional representation (GEB) in a spreadsheet program (p.e. Excel), which can design an optimal uniform flow rate distribution and low pressure drop. The cross flow behavior can´t be described with this method as yet. Therefor a linear equation system according to the Gauss algorhythm was developed, which can calculate the cross flows in the die with rectangle cross-section. In this network crosslinks are implemented to take into account the cross flows. The equation system is set up from the network, which corresponds to the number of the desired partial volume flows in the number of established equations. Furthermore the technical measurement entry of cross flows was conduced about the evaluation of ellipsoid shape according to the flow direction and the alignment according to the flow direction. Dead-stop experiments were performed by adding a blowing agent to the extrusion process. Negatives of die with gas-filled bubbles were prepared and evaluated with image analysis software across the half width of die. Afterwards the network theory was validated by Computational Fluid Dynamics (CFD).
Transition Metal Dichalcogenide Thermoplastic Composites Prepared Using Lab Scale Extrusion
Joshua Orlicki, May 2018
Significant interest has been growing around the properties and potential applications arising from 2D materials. Molybdenum disulfide (MoS2) is a well-known transition metal dichalcogenide (TMD) that can exhibit tunable electrical, optical, and catalytic characteristics based on its method of preparation. Here we have prepared optical plaques of poly(methylmethacrylate) containing hydrothermally synthesized MoS2 nanoflowers, both neat and complexed with reduced Graphene Oxide (rGO), using a laboratory scale twin screw extruder and injection molder. Filler dispersion, composite optical properties, and thermal properties have been assayed as a function of MoS2 characteristics and loading.
3D Numerical Simulation Of Multiphase Flow In Partially Filled Twin Screw Extruders
Hossam Metwally, May 2018
Three dimensional (3D) flow simulation though twin screw extruders are inherently difficult. This is due to the transient nature of the flow, the non-Newtonian behavior of the polymer, the fact that the screws are never fully filled in addition to other flow physics that may also be present (e.g. viscous heating or chemical reaction). Current flow simulation technology limited the scope of flow simulation to fully filled twin screw extruders which is seldom a realistic scenario. In the current work, the newly developed Overset Mesh technique for modeling moving part in general is employed to simulate such complex motion of a twin screw extruder. The fact that the extruder is starve-fed is taking into account and thus the flow field represents both the liquid polymer as well as the air (gas) within the extruder. Emphasis is placed on the flow visualization within the twin screw, velocity field, polymer volume fraction, shear rates and mixing index developed. The overset mesh technique is also compared with the long standing mesh superposition technique (MST) typically used to model fully filled twin screw extruders. Results for a simple 2D fully filled system compared very well between the overset mesh and the superposition mesh techniques. Similarly, a 3D comparison between the fully filled system using MST and the partially filled system using overset mesh have been carried out and the differences have been highlighted.
New Involute Extruder Screw Elements For Improved Productivity And Quality
paul andersen, May 2018
The co-rotating fully intermeshing twin-screw extruder has evolved significantly in the 60 years since it was commercialized in 1957. While this equipment might be considered a “mature” technology, it has not experienced a decline in new developments as might be expected, but rather a significant number of advancements. The technology continues to evolve. For example in the last 20 years several significant developments have been introduced. These include a) the implementation of high torque (power) designs, b) the use of increased screw rpm in conjunction with high torque for improved operating flexibility and productivity, and c) a breakthrough technology for feeding difficult to handle low bulk density materials. However, one area of twin-screw technology that has not evolved as much is screw elements geometry. Conveying elements and kneading blocks have remained essentially the same since the original Erdmenger design patents filed in the late 1940’s and early 1950’s. However, to take advantage of increased torque and power transmission capacity introduced in the newest generation of twin-screw compounding extruders, solids feed conveying and melt/mixing capacity in, for example, some highly filled compounds, had to be improved. Coperion has developed special involute screw and kneading elements with a new (Patent: EP 2 483 051 B1) cross section design to help achieve this objective. This paper will focus on the comparison of standard kneading blocks vs new involute kneading elements, specifically looking at some significant aspects related to performance.
Investigation On The Effects Of The Processing Parameters On The Replication Quality Of Micro-Structures In The Extrusion Embossing Of Polycarbonate Films
Florian Petzinka, May 2018
The application of micro-structures enables the integration of new functionalities on product surfaces. Though some applications have successfully been introduced on the market, widespread use of the full potential is depending on efficient and economical production processes. For plastics films the variothermal extrusion embossing process enables a quick and cost efficient replication of micro-structures on large areas.To achieve high quality replication, the process has to be finely tuned to the desired geometry. In this paper, the effects of the processing parameters on the replication quality inside previously established processing windows are investigated for two polycarbonate materials. The replication quality is evaluated for three different micro-structures.The experiments confirm strong interdependencies between the processing parameters, the material behavior and the geometric features of the micro-structures. These lead to partly contrary effects on the replication quality for different micro-structures and make the prediction of the optimal processing parameters for any given geometry very difficult.
Experimental Validation Of Fill Ratio, Resin Pressure, Resin Temperature Obtained From The 2.5D Hele-Shaw Model In Flow Of Corotating Twin Screw Extruder
Masatoshi Ohara, May 2018
Filling ratio, resin pressure and resin temperature are important process parameters related to the residence time distribution and thermal history of resin in a twin-screw extruder. This study presents a series of experimental results of these parameters and compares them with the values obtained from the 2.5D Hele-Shaw model calculation developed in our group recently for a twin screw extruder. Homo polypropylene with melt flow rate of 7.0 g/10-min was feed to a ϕ 26 mm co-rotating twin screw extruder. Temperature and pressure of resin were measured using sheathed temperature sensor and pressure transducer contacting to molten resin. Fill ratio distribution was measured by our laser light section method. The experimental results of resin pressure, temperature and fill ratio agreed well with the simulation results. It was validated that the Hele-Shaw model is valid for co-rotating twin screw extruder.
Viscosity And Dispersion Enhancements In Polyethylene Terephthalate Compounding
PRAKASH HADIMANI, May 2018
Loss of molecular weight due to shear and hydrolytic degradation resulting in lower Intrinsic Viscosity (IV) is a matter of importance while working with PET resin. In applications that demand high levels of dispersion, for instance, addition of Carbon Black, drop in IV has been an unfortunate compromise to achieve the necessary dispersion, which is measured using a Filter Pressure Value (FPV). This study uses an advanced screw design to compare viscosity retention and effective dispersion of carbon black in Poly(ethylene terephthalate) (PET) resin against a screw design used for many years as an industry standard. The advanced screw design attempts to eliminate the presence of peak shear, which is considered as the leading factor for the degradation of PET and the resultant reduction in IV. PET was blended with carbon black and dispersed in the extruder at a barrel temperature of 220°C to 260°C with screw speeds of 200, 250 and300 rpm. The screw configuration resulting in reduced degradation of PET and the retention of molecular weight was evaluated along with the dispersionpotential. These observations were evidenced from IV measurements on a Ubbelohde viscometers and Filter pressure value (FPV) for dispersion rating on a Collins FPV tester. Melt transducers were used to track melt temperature and pressure.Specific Mechanical Energy (SME) and extruder screw speed were also recorded from the extruder.
A Network-Analysis-Based Comparative Study Of The Throughput Behavior In Double Wave Screw Geometries
Hans-Juergen Luger, May 2018
We present a systematic approach based on networks that uses tensor algebra and numerical methods to model and calculate selected double wave screw geometries in terms of pressure-throughput behavior. Due to the extreme diversity of their geometries, describing the flow behavior is difficult and rarely done in practice. Three-dimensional CFD methods (finite-element or finite-volume) are well capable of calculating the flow behavior in complicated geometries, but they require vast computational power, large quantities of memory, and consume considerable time to create a geometric model created by computer-aided design (CAD). Consequently, a modified 2.5-dimensional finite-volume method, termed Network Simulation Method (NSM) is preferable.The main goal of this study was to compare the results of the NSM with CFD. The results for isothermal melt-dominant flow correlated well. With recently developed pressure-/throughput models for two- and three-dimensional flow of shear-thinning fluids the accuracy of NSM could be further improved. This makes network analysis a valid and easy-to-use tool for screw calculations in practice.
Enhancing Thermal Conductivity Of Pvdf/Graphene Nanocomposites By Water-Assisted Mixing Extrusion
Han-xiong Huang, May 2018
Water-assisted mixing extrusion was used to prepare thermal conductive poly(vinylidene fluoride)/graphene oxide (PVDF/GO) nanocomposites. The injected water not only improves the GO dispersion in the PVDF matrix, but also promotes in situ thermal reduction of the GO. As a result, the intrinsic thermal conductivity of the GO is significantly increased. The interfacial interaction between the GO and PVDF facilitates the nucleation of crystallites at the PVDF-GO interfaces, leading to reduced interfacial thermal resistivity. The thermal conductivity of PVDF/GO nanocomposites prepared with water injection is significantly improved. The nanocomposite with 1.0 wt% GO exhibits a thermal conductivity of 0.475 W/mK, which is much higher than those of the PVDF (0.206 W/mK) and the nanocomposite prepared without water injection (0.335 W/mK).
Effects Of Novel Extensional Mixing Elements On Fiber Length Distribution In Composite Extrusion
Molin Guo, May 2018
A new extensional mixing element (EME) for twin-screw extrusion was applied to compound polypropylene (PP)/glass fibers (GF), polypropylene (PP)/carbon fibers (CF), and polyethylene oxide (PEO)/polyethylene terephthalate fibers (PET-F) composites, and the effects of EME on fiber length distribution have been studied compared to two kinds of shear flow dominated Kneading Blocks (KB) screw configurations. Composites structures were characterized, and good dispersion of the fiber fillers in the systems has been achieved. It was concluded that EME can reduce the breakage of the stiff glass fibers and carbon fibers in the mixing zone compared with the KB, resulting in longer fibers remained after passing through the EME than the KB based on optical fiber length distribution measurements. Although flexible polyethylene terephthalate (PET) fibers are hard to cut by conventional KB, EME can easily break them into small pieces by very high pressure generated.
Role Of Interfacial Crystallization In Designing Polyolefin Blends From Mixed Stream Recycle Feeds
Alex Jordan, May 2018
Polyolefin production requires ~8% of global oil and natural gas production for monomer supply and the energy required for polymerization; often these polyolefins are used in short term applications such as packaging. While researchers work toward long term solutions involving sustainable polymers, the short term focus on how to better recycle polyolefins currently in the production/consumption cycle must be addressed. Given their chemical similarity and similar density, recycled polyolefins are difficult to separate from recycle streams often resulting in mixed stream recycle feeds. Previously we presented the role of residual oligomer after Ziegler-Natta polymerization of polyethylene (PE) and isotactic polypropylene (iPP) in preventing cross interfacial crystallization of immiscible PE-iPP bilayers which resulted in weak interfacial adhesion. We also presented strategies for promoting cross interfacial crystallization via processing (rapid interfacial quenching) and materials selection (thickened interfaces) in PE-iPP bilayers. Here we investigate the role of interfacial adhesive strength between three PE-iPP blends in the absence of applied shear during processing. With poor interfacial adhesion between PE/iPP, brittle failure of each blend was observed, as expected with immiscible polymer pairs. When interfacial adhesion strength exceeded that of the strength of component homopolymer, exciting synergism was observed between PE/iPP blends. Processing in the presence of applied shear flows (injection molding and film extrusion) will also be discussed. This finding highlights the importance of considering interfacial strength when designing mixed polyolefin recycle streams.
Designing And Computational Validation Of Extensional Mixing Elements (Emes) For Improved Dispersive Mixing In Extrusion Operations
Vivek Pandey, May 2018
Extensional Mixing Elements (EMEs) have been developed to impart extension dominated flow in twin screw extruders (TSE) through hyperbolic contraction channels. In this manuscript, EMEs for TSE have been made more aggressive by incorporating double hyperbolic contraction (contraction in horizontal as well as vertical direction) and were also successful in designing novel modular screw design for single screw extruder (SSE) to have dispersive and distributive mixing simultaneously. The design geometry of EMEs have also been optimized for both TSE and SSE using computational simulations.
Examination Of Power Consumption On Melt Spinning: Mono And Bi-Component Fibers
Javier Vera Sorroche, May 2018
The power consumption of a melt spinning extrusion module with mono and bi-component capability was under consideration, especially when analyzing the effects of process settings and downstream equipment on the total power consumption of the extrusion line. Experiments were conducted to quantify in real-time the effects of barrel temperature profiles, godet roll temperatures and godet roll speeds on the total power consumption when the extrusion line was operated to produce both mono and bi-component fibers. Between the effective use of extrusion processing conditions and optimization of the downstream equipment, the results have shown that there is a significant opportunity to save energy for the total power consumption. In bi-component mode, the downstream equipment was found to cause the highest effect on the total energy consumption. In mono-component mode, an optimal combination between metering pump and extruder motor appeared to be crucial for the optimization of the melt spinning system. Specific energy consumption was more favorable when the metering pumps were operated at higher speeds.
Effect Of Scale Up On Thermal Homogeneity And Energy Efficiency In Single Screw Extrusion
Javier Vera Sorroche, May 2018
Extrusion scale up is the procedure of replicating a plastic extrusion process in order to predict the performance of large production size extruders on the basis of geometrically similar small extruders. Extrusion processes are often developed on small extruders, so the effective scale up of these extrusion processes is very desirable as a means of increasing production rates. Although, studies on scale up procedures have been performed for several decades, no further studies have been undertaken to examine the influence of screw geometry on extrusion performance and energy consumption. In this work, in-process monitoring techniques incorporating thermocouple grid sensors and an energy meter have enabled real time examination of the extruder scale up by comparing the thermal and energy characteristics of a 38 mm diameter single screw extruder to that of a similar extruder with 63.5 mm screw diameter. Experiments, employing identical screw geometries, extruder set temperatures and range of screw speeds, were carried out on both machines with LDPE to quantify the effect of extruder scale on the measured throughputs, melt temperature homogeneity, die pressure and energy consumption.
Characterization Of Stress In A Twin-Screw Extruder For Processing And Extrusion Of Extrinsically Self-Healing Thermoplastics
Connor Armstrong, May 2018
Capsule breakup percentage in a co-rotating twin screw extruder is studied for the purpose of producing extrinsically self-healing polymers. A method of real-time characterization of stresses using calibrated stress beads and an optical probe was devised for this research. Three different strengths of stress beads are used to represent poly(urea-formaldehyde) (PUF) encapsulated healing agents. Stress bead breakup percentage was depicted over a selected range of statistically significant operating conditions: screw speed (N) and specific throughput (Q/N). Central composite design grids were created to analyze experimental results and generate a set of predictive equations for stress bead percent breakup. This paper examines the relationship between co-rotating twin screw extrusion operating conditions and breakup of PUF encapsulated extrinsic healing agents. It also marks the first step in understanding extrusion of efficient self-healing polymer composites.


This item is only available to members

Click here to log in

If you are not currently a member,
you can click here to fill out a member application.

We're sorry, but your current web site security status does not grant you access to the resource you are attempting to view.




spe2018logov4.png

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers, ISBN: 123-0-1234567-8-9, pp. 000-000.
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net