SPE Library

The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 

Search SPE Library
After Date: (mm/dd/yy)  
Sort By:   Date Added  ▼  |  Publication Date  ▼  |  Title  ▼  |  Author  ▼
= Members Only
Conference Proceedings
Filler Content and Properties of Highly Filled Filaments for Fused Filament Fabrication of Magnets
Joamin Gonzalez-Gutierrez, Ivica Duretek, Clemens Holzer, Florian Arbeiter, Christian Kukla, May 2017
Fused filament fabrication (FFF) is a very popular additive manufacturing technique for the production of geometrically complex polymeric parts. FFF can also be used for the production of sintered magnetic parts, as part of the shaping, debinding and sintering (SDS) process. In order for sintering to be possible, it is recommended to prepare feedstock materials with 50 vol% or more filler content. However, when the filler content increases the properties required for FFF change. In this paper the mechanical properties of filaments, the viscosity of the molten feedstock, and surface properties of the solidified feedstock were investigated as a function of strontium ferrite powder content (53 to 60 vol%). In addition printing trials were performed. It was observed that mechanical properties significantly decrease, the viscosity increases and the surface tension showed no changes as a function of powder loading. All materials were in principle printable, but the printing temperature had to be adjusted to print the most highly filled material due to its lower mechanical properties and higher viscosity.
Preparation of PA6/LLDPE Blends by Rotational Molding
Rubén González-Núñez, Rosa Gabriela López-GonzalezNúñez, Pedro Ortega Gudiño, Milton O. Vázquez-Lepe, Denis Rodrigue, May 2017
Blends of linear low density polyethylene (LLDPE) and polyamide 6 (PA6) were produced by rotational molding. Blends of 10, 20 and 30% vol. of PA6 in LLDPE were previously prepared using two methods: dry blending using a high shear mixer, and melt-compounding using a twin-screw extruder. The objective of the work is to study the morphological and mechanical properties of rotomolded parts of polymer blends. The results indicated that the rotomolded parts of the blends obtained by previous extrusion generated smaller and better dispersed PA6 particles in the LLDPE matrix. The mechanical properties are also found to be influenced by the blend preparation method.
Experimental Study on Fiber Attrition of Long Glass Fiber-Reinforced Thermoplastics under Controlled Conditions in a Couette Flow
Sebastian Goris, Sara Simon, Camila Montoya, Abrahan Bechara, Maria Virginia Candal, Dave Brands, Angel Yanev, Tim A. Osswald, May 2017
Fiber attrition of long glass fiber-reinforced polypropylene in a Couette Flow was studied to obtain a fundamental understanding of the physics in fiber breakage. The developed experimental setup of the Couette rheometer in combination with the developed fiber length measurement technique is able to provide repeatable, accurate and robust data sets to quantify the fiber length reduction during the processing of fiber-filled materials. This article summarizes the first results of an ongoing experimental study on fiber breakage at the Polymer Engineering Center at the University of Wisconsin- Madison. The impact of fiber concentration, initial fiber length, residence time, melt temperature and processing speed was quantified and studied. The proposed procedure aims to isolate the effect of process variables on fiber breakage. Even for the gentlest processing conditions, the results indicate that the residual fiber length after processing is less than 50% of the initial fiber length. For the most severe processing conditions, the results suggest a reduction to less than 10% of the initial fiber length, which highlights the challenges that fiber breakage poses for processing of long glass fiber-reinforced thermoplastics.
Modified Polylactide with Improved Thermal and Rheological Properties for Foaming
Svenja Göttermann, Christian Bonten, Tobias Standau, Volker Altstädt, May 2017
Polylactide (PLA) is the most important bioplastic on the market due to its good mechanical properties and the permanent growth of the production capacity. One drawback of commercial polylactide is its too low melt strength and melt extensibility, which is disadvantageous in terms of foaming. To overcome these commercial grades need to be modified. Therefore, several chemical modifiers were used to induce crosslinking, chain extension or grafting by means of reactive extrusion on a twin-screw extruder. The best results were achieved with organic peroxide. With this modifier the melt strength and the crystallization rate were improved and lead to foams with a closed-cell structure and low density. Organic peroxide was found to be more efficient than the commercial multifunctional epoxide modifier.
PHA and PLA Biodegradable Plastics with Rice Straw Filler to Create Biobased Structural Insulating Panels (BSIPs)
Joseph Greene, May 2017
Biobased composites were produced with PHA and PLA biodegradble plastics with rice straw and walnut shells as fillers. Rice straw laminate bio-composite boards were produced with PHA and PLA biodegradable plastic pellets with rice straw in a Leitritz twin screw extruder. Rice straw and walnut shells were added to PHA/PLA plastic to form a rice straw composite with 40% filler and 60% plastic. The pellets were compression molded to form the skins of the BSIP. PLA foam was used to produce the biobased foam core. The PHA, PLA, rice straw, and walnut shell mixtures were injection molded and different concentrations of rice straw and walnut shell filler. Tensile testing results show that PHA/PLA blend had 16% lower modulus and 33% less load than PLA by itself. Walnut shells and rice straw reduced the tensile strength and elongation of the plastic composite but increased the tensile modulus. Walnut shells and rice straw also decreased the impact strength of the plastic biocomposite. The biocomposite panels can be combined with a PLA foam core to form the biobased structural insulating panels.
Welding of PLA
David Grewell, Leo Klinstein, Jeff Frantz, Karla Lebron, May 2017
This project focuses on the characterization of bioplastics joined with impulse heat sealing and ultrasonic welding. Polylactic acid (PLA), which is typically derived from starch rich crops such as corn, was studied. This material was welded in two forms, rigid samples and film. Ultrasonic welding was used to weld rigid PLA samples and PLA films were joined with impulse welding. A characterization of the mechanical properties of this bio-based plastic was completed with a tensile test to determine which welding parameters were the most influential on the material strength. In reference to ultrasonic welding weld time, weld distance and velocity effected weld strength the most. In reference to impulse welding of films, heating time and temperature were the dominant welding parameters relative to weld strength. In addition the interfacial healing activation energy was calculated to predict interfacial healing for the different types of welding.
Bio-Based Construction Adhesives
David Grewell, Kendra Allen, Eric Cochran, Chris Williams, Ty’Jamin Roark, May 2017
This papers reviews the development and characterization of a bio-based construction using glycerin from transesterification of soybean oil for the production of biodiesel. The results indicate that the bio-based adhesive has the ability to perform as well as, and in some cases better than commercially available petrochemical adhesives. The bio-based adhesive is based on renewable feedstocks, has zero VOC (Volatile Organic Compounds), and is sustainable. The bio-based adhesive was compared to commercial petrochemical adhesives in terms of lap shear strength, water stability, creep resistance, and three point bend strength. In addition, construction materials, such as oriented strand boards (OSB) were produced with the bio-based adhesive and compared to commercially available OSBs. Based on three-point bend tests and water stability, the results indicate that the bio-based OSB products performed as well as OSB products based on petrochemicals. Future tasks involve discovering and optimizing more applications for the bio adhesive such as rubber adhesion and flexibility, and pressure sensitive applications.
Isothermal Cure Rheology and Chemo-Physical Correlation of a Medical Grade, Two-Part Epoxy-Amine Adhesive System
Xiaoping Guo, Alan Fredrick, May 2017
A series of isothermal, rheometric, cure experiments were conducted in small-amplitude oscillatory shear (SAOS) rheology mode at various temperatures of interest in an effort to probe relevant cure rheological behaviors of a two-part, reactive epoxy-amine adhesive system. Based on the measured rheograms, various characteristic cure times and physical transitions were quantitatively identified. A nonisothermal, calorimetric cure experiment was carried out by using a differential scanning calorimeter (DSC). The results were further utilized to analyze the “instant” chemo-physical changes at various partly-cured states of the adhesive system under simulated isothermal or non-isothermal cure conditions by using the StepScan™ DSC method. The chemo-physical correlations between the rheologically-measured physical transitions and calorimetrically-measured chemical changes are established for the purposes of understanding relevant mechanisms that govern isothermal cure processes of the adhesive system and providing practical engineering insights for advance process development in making medical devices.
Enhanced Thermal Conductivity of Ultra-High Molecular Weight Polyethelene (UHMWPE) Films through Strain-Induced Fibrillation
Yanting Guo, Siu N. Leung, May 2017
Thermally conductive polymers have emerged and considered as low-cost and lightweight alternatives to traditional metal and ceramic for thermal management applications. In this context, this study presents an industrially feasible processing strategy to develop and fabricate highly thermally conductive ultra-high molecular weight (UHMWPE) thin films, through extensionally mechanical stretching, to promote the fibrillation of polymer films. Key parameters (i.e., strain level and strain rate) during the stretching process were investigated, and structural characterization (DSC and SEM) and thermal conductivity measurement were conducted, to derive the processing-structure-property relationship. With an optimal strain level and a high strain rate, UHMWPE films with a maximum in-plane thermal conductivity of 1.52 W/(m·K) were fabricated. This corresponded to a thermal conductivity that was approximately three times higher than that of compression-molded films.
Thermoplastic Polyurethane Foaming through Extrusion Using a Blowing Agent
Qingping Guo, Andrew Kenny, Shahid Ahmed, Ghaus Rizvi, May 2017
This study investigated a process of making thermoplastic polyurethane (TPU) foam using Expancel® as blowing agent during an extrusion process. For this purpose, different let down ratios (LDRs) of blowing agent were implemented in TPU. The study employs X-ray micro computed tomography (µCT) in order to see effect of the changing LDR on expansion ratio and cellular structure of the foamed TPU. The results reveal that LDRs and pressure significantly influence both the expansion ratio and the morphology of the phases present in the foamed TPU. Also the viscosity of TPU at different LDRs was measured using a custom-made in-situ capillary rheometer, which was mounted to an extruder.
Thermoplastics Viscosity Measurement Combining Experimental and COMSOL Simulation Results
Qingping Guo, Ahmed Shahid, May 2017
Present study discusses a new method of how to apply COMSOL-Multiphysics® numerical simulation to improve the accuracy of polymer melts viscosity measurements. The main emphasis is placed on to evaluate the effects of entrance and exit geometry of a capillary rheometer on viscosity measurement. By combining experimental and COMSOL® simulation results, an accurate Bagley correction factor was found for a low density polyethylene (LDPE) and polypropylene (PP) - a stable power-law polymer melt. The results showed the Bagley correction factor based on COMSOL simulation was different from the experimental results. The method which combines experimental and simulation data can give an optimized value for Bagley correction factor for thermoplastics. And it will be used to precisely predict polymer melt viscosity for online rheometers attached to an extrusion line.
Three-Dimensional Numerical Flow Simulation of Resin Transfer Molding Process with Draping Analysis
Sejin Han, Mehran Ebrahimi, Massimiliano Moruzzi, Doug Kenik, May 2017
In this paper, the numerical flow simulation of thermoset materials in resin transfer molding (RTM) process with draping analysis is described. It gives an introduction, theory and methods of analysis for the flow and draping. Then, two example cases are shown. One is a simple case where the accuracy of the solution can be checked against analytical solutions. Another is the case where the effect of using draping analysis in the RTM flow simulation is shown. The simulation results in this study are in good agreement with analytical solutions where analytical solutions are available. They also verify the significance of considering draping analysis results in RTM flow simulations.
Steps to Overcome Flow Problems
Carrie Hartford, Brian H. Pittenger, May 2017
Every bulk solids handling process is prone to unreliable flow resulting in a negative effect to the bottom line of the processing unit. Understanding the cause of the flow issues is the first step in troubleshooting the problem. Next, measuring the material’s flow properties is critical in providing the design data required to develop a comprehensive scientific solution. Or in the case of a new installation, the design data is required to prevent flow problems from occurring so that the new equipment works correctly from start-up. The flow property data can also provide the design parameters for a purge system to strip out residual volatiles and produce safer, higher value, and customer pleasing products.
Degradation of PBSA in Water
Douglas Hirt, Mary Mitchell, Treyton Ryder, May 2017
The degradation of poly(butylene succinate-co-adipate) (PBSA), a biodegradable polyester that can be made from renewable feed stocks, was investigated in this work. PBSA-starch-furfural blends of up to 20 wt% corn starch and up to 15 wt% furfural were made to determine if these systems could be used to deliver a control amount of furfural, a known nematicide, for agricultural applications. The PBSA-starch-furfural blends were aged in distilled water for up to 30 days. There was only a slight downward trend in molecular weight of the PBSA and PBSA-starch blends over the 30-day aging period. Changes in the total weight of samples and the concentration of furfural in the water surrounding the pellets indicated that furfural was quickly released from the pellets and a total furfural release of 92% was achieved by day 10 of degradation.
Optimization of the Devolatilization Process in the Injection Molding Cylinder
Yuki Hisakura, Hisakura Yuuki, Kawakubo Mitsuhiro, Kitahara Kenichi, Sugihara Makoto, Hamada Hiroyuki, May 2017
In the recent years, many of the past demerits and all vent up problems that the past vent-type injection molding machines had were solved, so such a vent-type injection molding machine is being focused. However, the plasticization process of vent-type molding is not solved theoretically and systematically. In order to use a vent-type molding widely in the future, the technology needs to be built systematically by theoretical break-through of the devolatilization of gas and moisture, and by studying the influence on the molding materials. In our study, PA6 materials with dry pellets and water absorption pellets were molded by the normal barrel and the vent barrel injection molding. The systematic construction of the technology studied by grasping injection molding parameters which would influence the devolatilization of gas and moisture in the cylinder during the plasticization process for the vent-type molding by the system optimizations using Quality engineering .
Sterilization Effects on the Mechanical Properties of Laser-Welded Polymer Specimens of Polypropylene and Polycarbonate
Kai Holl, Thomas Seul, May 2017
Microorganisms on components need to be removed through sterilization in order to ensure the safe use of medical products for patients. Therefore, polymer parts are typically treated with gamma radiation, ethylene oxide or superheated steam; such treatment may result in a modified structure or the degradation of the polymer. The present paper shall demonstrate how the mechanical properties of test specimens and welded samples of polypropylene and polycarbonate change during the sterilization procedure. The resulting changes in the structure and the degradation respectively will be analyzed by Fourier transform infrared spectroscopy (FTIR) and Differential Scanning Calorimetry (DSC) and structural property relationships shall be derived. The analyses showed that the changes in the mechanical properties depend on the sample, the sterilization procedure and the corresponding polymer; and that those changes must be considered when designing the respective products.
Bonding of Plastic Parts with Dispersion Adhesives – Film Formation via Diffusion Processes
Matthias Hopp, Elmar Moritzer, May 2017
Bonding of plastic parts poses some challenges e.g. regarding wettability, adhesion or the choice of a suitable adhesive system. Often cost-intensive, chemically setting adhesives such as epoxy resin adhesives are used. In the furniture and paper industries, porous materials such as wood or paper are bonded with dispersion adhesives which are regarded as ecologically friendly and, due to the high water content, are cost-effective. In the context of combining wood and plastic, for example with WPC (Wood-Plastic Composites), hybrid joints of wood/WPC or wood/plastics are becoming more and more important for industrial applications. The investigations in this paper show a possibility to bond non-hygroscopic parts with dispersion adhesives. Through perforation of one bonding partner, the water in the wet adhesive can be removed from the adhesive layer. The process of film formation is analyzed considering diffusion processes, capillary forces and deformation of the particles.
A Basic Experimental Study of Cast Film Extrusion Process for Fabrication of Plastic Microlens Array Device
Yi Min Hsieh, Chih-Yuan Chang, Xuan-Hao Hsu, May 2017
This paper reports a highly effective method for fabrication of plastic microlens array device based on a cast film extrusion process. In this method, a thin steel mold with a micro-circular hole array pattern is fabricated by photolithography, and a wet chemical etching process. The thin steel mold was then wrapped onto a metal cylinder to form an embossing roller mold. During the cast film extrusion process operation, the molten polymer film was extruded and immediately pressed against the surface of the embossing roller mold. Under the proper processing conditions, the molten polymer will just partially fill the micro-circular holes in the mold and due to surface tension form a convex lens surface. A continuous plastic film with a microlens array pattern was fabricated. This technique shows great potential for the mass production of large-area plastic microlens array device with high productivity and low cost.
Optimizing the Warpage of Injection Molding Parts Using 3D Volume Shrinkage Compensation Method
Chao-Tsai Huang, Cherng-Jyi Yeh, Gwo-Geng Lin, Wen-Ren Jong, May 2017
Injection molding has been applied to manufacturing for various products for years. However, due to the requirement of high precision for modern products, the product development is still very challenge. Conventionally, people used to utilize the packing pressure technology (either enlarge packing pressure or extend the packing time) to enhance the dimension quality, but it is not always useful. In this study, first we have applied Computer-aided Engineering (CAE) technology to analyze why the conventional packing pressure is not always effectively. The reason is that the compiled injection system with different thickness along the product will cause non-uniform shrinkage all the time. It is not easy to compensate using packing pressure skill. Furthermore, we have applied 3D volume shrinkage compensation method (3DVSCM) to reduce the warpage defect based on a mobile phone benchmark. Results show that through various packing pressure operations the dimension deviations at different regions can be compensated simultaneously. It is also verified under various operation conditions, such as different injection times, melting temperatures, mold temperatures, and so on. The modification is always so effectively. That means the high dimension quality demand is possible obtained utilizing 3DVSCM under suitable process condition setting.
Online Measurement of Polymer Melt Viscosity in Injection Molding
Ming-Shyan Huang, Shih-Chih Nian, Jian-Yu Chen, Kai-Jye Yang, Jian-Chou Tseng, May 2017
Melt viscosity, determined by the shear rate, barrel temperatures, and pressure during plasticization, greatly affects the flow ability of polymer melts as well as the quality of injection-molded parts. In particular, the consistency of molding qualities is highly relevant to the plasticizing quality at each cycle (i.e., injection molding requiring a high yield rate highly relies on the stability of polymer melts). However, numerous factors affect the plasticizing quality, including the geometry of injection screws, processed polymer materials, processing parameters of plasticization such as the feeding rate, screw rotational speed, barrel temperatures, back pressure, and screw backward speed. The conventional approach of plasticization in injection molding machines uses a single reciprocating screw for conveying, melting, and metering polymer melts. The plasticizing quality is roughly adjusted by indirectly controlling barrel temperatures; thus, the melt viscosity varies. An in-suit approach of assuring melt quality is to measure the melt viscosity variation online, which is a more suitable indicator of the plasticizing quality than temperature. This study thus monitored the melt viscosity variations in polymer melts by using in-mold pressure sensors. Furthermore, the effects of the injection velocity and mold temperature on the melt viscosity variations were examined.

This item is only available to members

Click here to log in

If you are not currently a member,
you can click here to fill out a member application.

We're sorry, but your current web site security status does not grant you access to the resource you are attempting to view.

  Welcome Page

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net