SPE Library


The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 


Search SPE Library
    
    




Sort By:  Date Added   Publication Date   Title   Author

Conference Proceedings

A System For Visualizing And Measuring Stress Of Plastic Flows Under Shear Conditions
Taylor Ducharme, May 2018

Shear stress on polymers has been shown to have a strong effect on morphological and thus mechanical properties of the final structure. In this study, an in-situ visualization system was developed to i) visualize crystal nucleation and growth with high spatial and temporal resolutions and ii) have capability to measure the local shear stress and viscosity of a saturated polymer in isolated, simple shear. The system allows for easy control of experimental parameters: applied shear strain, shear strain rate, temperature, heating/cooling rate, pressure, polymer, and saturation gas. An early verification of the shear stress measuring capability was conducted of the This visualization/measuring system provides a reliable way of determining both rheological and optical properties of plastics simulated under dynamic conditions like that of industrial plastic processes.

Ulta-Low Density Foams Of Nanocrystalline Cellulose Reinforced With Polyvinyle Alcohol
Nahal Aliheidari, May 2018

Environmentally friendly thermal insulation and energy saving materials are in high demand for buildings, packaging, and other applications. Here, we report ultra-low density composite foam materials that are mainly composed of cellulose, an abundant degradable and recyclable green material. Nanocrystalline cellulose (NCC) was mixed with 0-20 wt.% polyvinyl alcohol (PVA) in an aqueous solution, followed by ice crystallization and freeze drying processes to fabricate the NCC/PVA cellular structures. Ultralight foams with densities as low as 0.026 g.cm-3 (porosities as large as 98.22%) were successfully prepared and their compression and thermal conductivity behaviors were characterized. The results revealed that the compressive stiffness and strength of NCC foams can be significantly enhanced (about an order of magnitude) by the introduction of 20 wt.% PVA as an elasticity enhancer. The thermal conductivity of NCC/PVA foams remained approximately unchanged with an increase in the PVA content and varied only between 0.037 and 0.041 W/mK, a range that is common for commercially available insulation materials. A relatively low thermal conductivity with enhanced mechanical properties of these NCC-based foams offers a potential bio-based material composition for insulation applications.

Enhancing Electromagnetic Shielding Performance Of Pvdf/Mwcnt Composites Through Foaming
Chenyinxia Zuo, May 2018

The relationship between Electromagnetic interference shielding effectiveness and void fraction of foamed PVDF polymer-based composites with 1 wt% MWCNTs is investigated in this paper. The specimens are prepared through the film casting, compression molding, and batch foaming processes. The composite is advantageous to EMI shielding when the foaming technique is incorporated to reduce weight. It is found out that a 0.62 ~ 0.96 g/cm3 composite achieves an overall EMI SE of 10.5 ~ 25.4 dB in the frequency range of 26 ~ 40 GHz, since increased interfacial surface area from internal gas bubbles contributes to a rise in EMI shielding via absorption.

Resorcinol Formaldehyde Aerogel Nano-Network Structural Assembly And Its Thermal Properties Correlation
Mohammed Alshrah, May 2018

When organic aerogel particles are polymerized, a complex three-dimensional (3-D) nano-network is generated. This network is composed of randomly assembled nanoparticles, which form many-branched nanoclusters with unique morphological features. The organic aerogels that result from this process have exceptional properties, which supersede those of the current materials used. We studied the morphological features of an organic aerogel (resorcinol-formaldehyde, RF) and correlated each feature to the sample thermal insulation properties. Several RF aerogels were synthesized with different morphological features and structural assemblies. This was done by changing the catalyst percentages and the void fractions at the polymerization stage. Then, each morphological feature was assessed and categorized using two scales: the macro scale and the micro scale. We found that the macro-features were independent of the catalyst percentages and depended only on the void fractions. However, the micro-features were highly sensitive to any changes during the polymerization process. These changes altered the samples’ three main structural factors: (i) The structural assembly, (ii) The porous structure, and (iii) The fractal parameters. Thus, we characterized and quantified each component within these areas. Then, we assessed the structure’s heat transfer modes and classified them as follows: (i) Solid conductivity through the solid particles, (ii) Gas conductivity through the gas molecules, and (iii) Thermal radiation. We identified the morphological features that governed each mode. For example, the samples’ solid conductivity was highly dependent on the fractal parameters of our structure; that is, the particles’ roughness, the structural complexity, and the structural homogeneity. For those samples with extremely rough particles and a complex structure, the solid conductivity reached the lowest possible point. We also found that the total thermal conductivity was mainly controlled by the micro-morphological features, and that the solid conductivity was the most dominant heat transfer mode.

Modeling Of Cell Growth Effects On The Percolation Threshold Of Rod-Like Fillers In Conductive Polymer Composite Foams
sai wang, May 2018

In the conductive polymer composite (CPC) foams, the cell growth can make the rod-like conductive filler rotate and translate due to the force exerted on the polymer matrix. This may influence the percolation threshold of the fillers in CPC foams. This study explores a mathematic model to estimate the effects of cell growth on the percolation threshold.At first, the rod-like filler in the 3-dimensional Cartesian coordinate system was defined using six parameters (i.e., the three coordinates of the filler mid-point, filler length and the two angles between filler and two coordinate planes). The defined filler in 3-dimension was then converted into a 2-dimensional plane using the Euler angels. Then, the filler rotation and translation caused by a single cell growth on that 2-dimensional plane was calculated based on a previously developed mathematical model by our group (Compos Part A, 88). The filler after rotation and translation in 2-dimension was converted into the initial corresponding 3-dimensional Cartesian coordinate system using the Euler angels, again. Finally, with the initial and final filler coordinates before and after cell growth, we can use a Monte Carlo model to simulate the effects of cell growth on the filler percolation threshold.The single-cell-growth effects in a polymer foam containing MWCNTs was calculated as an example. Comparing to the solid system without foaming, in which the MWCNTs percolation threshold was also calculated by the Monte Carlo model, the foam system exhibited lower percolation threshold of MWCNTs. This indicates that foaming may have positive impact on the percolation threshold of conductive fillers in CPC foams.

Poly(Vinylidene Fluoride)/ Graphene Nanoplatelets Composites With Microcellular Structure To Enhance Electromagnetic Shielding Properties
Biao Zhao, May 2018

It is well accepted that the microcellular structure can enhance electromagnetic interference shielding (EMI) properties due to the multiple reflection and scattering in the microcells. Moreover, the foams were proved to be the competitive materials owing to the savings of energy and raw materials. In this study, the poly(vinylidene fluoride)/ graphene nanoplatelets (PVDF/GnP) composite foams were successfully prepared through a facile home-made batching foaming avenue. The microcellular structure of PVDF/GnP foams can be tuned by the batching foaming temperature. We can notice that the void fraction of foams firstly increased and then decreased with increasing temperature. In addition, we also investigated the electrical conductivity and electromagnetic shielding properties of PVDF/GnP foams. The results revealed that the electrical conductivity and EMI properties can be effectively monitored, and the PVDF/GnP foam with low void fraction exhibited the high electrical conductivity and EMI properties. The optimal EMI values of PVDF/GnP foams with a thickness of 2.5 mm were 27.4 dB. An analysis of the shielding mechanism showed that the main contribution to the EMI shielding came from the absorption mechanism, and that the EMI shielding could be tuned by controlling the foams’ thickness. Thus, these PVDF/GnP foams could be considered as the high-efficiency EMI materials.

Mining The Value From Oil Sands Tailings Ponds
Pavani Cherukupally, May 2018

In Canada, the cleaning cost of 340 billion gallons of oil sands tailings ponds is estimated to be over $27 billion. There is a need for cost-effective technologies for removal and recovery of oil from these ponds. Previously, we reported foams application for absorption and adsorption of crude oil from water. This works aims to develop effective method for foam reuse and oil recovery to improve the benefits of the treatment process. The polyester polyurethane (PESPU) foam with pH-responsive wetting properties and crude oil were used to assess the effectiveness of mechanical compression, pH-swing method, and chemical wash method. The mechanical compression is a simple, environmental friendly, and easy to implement method. This process was effective in recovery of the absorbed oil, where the oil uptake mechanism is reversible superhydrophobic forces and pore filling. However, for adsorbed oil recovery it was less effective. According to pseudo-second-order kinetic model, the oil droplets were adhered to the sponge surface by physical forces. As a result, mechanical forces were weak in shearing-off the thin oil film. Based on pH-responsive wetting property, the oil adsorption was effective at acidic conditions. Therefore, the oil recovery was performed at basic conditions by introducing new “pH-swing” technique. This method produced minimal waste and sustainable, but materials reusability declined to ~70% within three cycles. Finally, chemical wash method was applied to recover the adhered oil from the surface. According to surface chemical displacement principles, a solvent with appreciably low surface tension than the foam and similar molecular structure the crude oil was used to wash the sponge at ambient conditions. Due to enhanced solubility and flowability, the crude oil was readily recovered from the foam surface. The cleaned foam as well exhibited over 99% efficiency over multiple reuses. Our finding show that the foam is a promising solution to remediate detrimental oil sands tailings and for recovery of the residual crude oil from water leading to environmental and economic benefits.

In-Situ PP/PET Nano-Fibrillated Composites: The Effect Of Viscosity Ratio On Fibrillation And Foaming Behavior
Chongxiang Zhao, May 2018

It is widely accepted that the manufacturing of high expansion PP foams with fine cell morphology is a challenging task due to the low melt strength and the weak rheological behavior of the linear polypropylene. In this study we present a novel method to manufacture high cell density, large expansion microcellular foam through nano-fibrilation PP/PET composites. Various studies have been conducted to improve the processability of linear PP foams. Until now, the most successful industrial approach is using the branching PP as it expressed the strain hardening response and the increased melt strength behavior. However, the commercial price of branching PP resins are still doubled or even tripled comparing with linear PP resins, which dramatically limits the branching PP’s applications. Inducing chemical cross-linking is proven to be another effective way to improve the melt strength of PP. However, the cross-linked structure causes difficulty in recycling PP resins. Furthermore, the cross-linking reaction is not evenly initiated throughout the matrix rendering non-uniform cell structure in the final foam product. Implementing inorganic/organic filler is another alternative route for enhancing the foamability. PP reinforced with those fillers has higher viscosity and better elasticity at melting state. Nonetheless, the well-recognized challenging issue is to achieve well distribution and dispersion of nano-size fibers inside the polymer matrix. Because of the large surface to volume ratio, the nano-fibers tend to agglomerate. The well-established methods usually requires complex experimental conditions and normally involves dealing with chemical hazards. By implementing nano-fibrillation technology, all above mentioned draw-backs were overcome. The nano-fibrillation technology is used to manufacture polymer-polymer fibril composite in this study. The nano-fibrillation technology can generate high aspect ratio nano-fibrils uniformly dispersed inside the polymer matrix. The processing can be briefly summarized as: (i) blending immiscible polymer matrix (A) and polymer reinforcement (B) to make polymer (B) dispersed in spherical shape (the melting temperature of polymer B should be at least 30oC higher than polymer A); (ii) applying large deformation on the polymer extrudate by either hot stretching or cold stretching; (iii) carefully choosing a temperature between the melting temperature of polymer A and polymer B to melt the composite without damaging the fibril morphology of polymer B. In this study, three kinds of PPs with different viscosity are reinforced with PET nano-fibrils via melt spinning. The study shows that the high viscosity PP is preferred to generate low diameter nano-fibrils (~200 nm) in a wide concentration range; while the diameter of fibrils in low viscosity PP decreased with raising PET concentration. The oscillatory shear behavior is studied by comparing the storage modulus (G’) and phase angle (tanδ) of the non-fibrillated and fibrillated samples. Differential scanning calorimetry and birefringence optical microscope were employed to study the crystallization kinetics of PP/PET fibril composites. The rheological properties and crystallization kinetics were significantly improved with the presence of PET fibrils. Crucially, benefit from the strengthened rheological behavior and crystallization kinetics, the batch foaming of PP/PET nano-fibril composite is able to product a high cell density polymer foams.

Innovative And Useful Characteristic Values For The Pro-Cessing Of Thermosetting Molding Compounds
Thomas Scheffler, May 2018

Due to their complex flow and curing behavior the quality of parts made from thermosetting molding compounds depends to a high degree on the reactive and viscous char-acteristics during their processing. In the study at hand a newly developed test procedure was applied to examine the dependence of these characteristics on the composition of the pourable molding compound, the amount of hard-ener, the present material humidity and the process pa-rameters. Three thermosetting molding compounds were purposefully impinged with high air moisture, the amount of hardener was partially increased and the resulting flow and curing behavior was determined with the implement-ed testing sensors. A distinct dependence of the flow re-sistance and the reaction kinetics on the tool temperature, the amount of hardener and the material moisture was detected. These results are discussed and the potential of the developed testing device is pointed out.

Simulation Of Mold Filling Charaterization Of Phenolic Injection Molding Compounds With Slip Boundary Condition
Ngoc Tu Tran, May 2018

The present paper shows a rather simple but effective and useful method, namely, the spotwise painting of the mold wall surface to investigate slip of the phenolic melt on the cavity surface. For all processing conditions, it was found that there was a strong slip on the interface between the phenolic polymer and the mold wall surface. Furthermore, a differential scanning calorimeter (DSC) and a plate-plate rheometer are employed to measure degree of cure and viscosity of the phenolic injection molding compounds. In addition, a numerical methodology has been written to fit cure kinetics and reactive viscosity model based on experimental data. The fitted parameters were used to simulate the injection molding process for a phenolic component with slip boundary condition. A good agreement was found in comparison between simulation and experimental results.

Fabrication Of Synergistic Flame-Retardant Unsaturated Polyester Resin Based On Ammonium Polyphosphate And Aluminum Hydroxide
Xingxing Shi, May 2018

The exploration of highly effective flame retardants takes an essential part in the fire-resistant enhancement of matrix. Herein, UP/APP/ATH composites were fabricated by blending ammonium polyphosphate (APP) and aluminum hydroxide (ATH) in various proportions into unsaturated polyester resin (UP) matrix at the curing process. Thermogravimetric analysis (TGA) indicates the UP/APP/ATH composites exhibit a favorable high-temperature stability and an enhanced char yield. The flame-retardant performances were conducted by UL-94 vertical combustion tests, limiting oxygen index (LOI), and microscale combustion calorimetry (MCC). The combination of APP and ATH demonstrates an excellent synergistic flame-retardant effect, UP/APP/ATH sample can reach V-0 rating and LOI values are raised to 33.5 %. SEM and thermogravimetric analysis/infrared spectrometry (TG-IR) tests represent that the formed compact and dense char layer can act as a physical barrier to inhibit the heat transfer, and the volatiles of combustible gases are reduced.

Non-Isocyanate Polyurethane Networks Can Be Melt-Reprocessed With Full Property Recovery Associated With Cross-Link Density: The Case Of Polyhydroxyurethane Networks
John Torkelson, May 2018

Conventional cross-linked polyurethane (PU) or PU networks are unable to be reprocessed in the melt state into reshaped, high-value recycled products. This is because of the irreversible nature of the cross-links in PU, a common feature of thermosets which prevents the cross-linked network or thermoset from ever returning to a melt state. We have recently discovered several chemical platforms for making cross-linked polymers melt-reprocessable by instilling a reversible nature to the cross-links as a function of temperature. Here, we describe our approach for making reprocessable polyhydroxyurethane (PHU) networks that exhibit full property recovery associated with cross-link density after multiple melt-state reprocessing steps. PHUs are a class of non-isocyanate-based polyurethanes (NIPUs) that can be synthesized via reaction of amines with cyclic carbonates; the PHUs contain urethane linkages with adjacent primary or secondary hydroxyl groups. In the presence of appropriate catalyst, we have synthesized PHU networks with robust properties at room temperature and many tens of degrees above room temperature. These networks containing appropriate catalyst can be effectively reprocessed at least three times at 140 degrees C leading to full recovery within error of rubbery-state plateau modulus and room-temperature tensile strength and strain at break.

Frontally Polymerizable Gels For Double-Network High-Performance Resin Systems
Matthew Lampe, May 2018

This paper presents formulation details and initial property information for a new class of high-performance double-network glasses that are created through frontal polymerization of an initially formed gel. It is envisioned that this technology can be used for a variety of applications ranging from new adhesives to composite pre-pregs. Herein, we describe the creation of a new, one pot, liquid system consisting of miscible acrylates and epoxies. This system has the ability to undergo radical polymerization of selected acrylate monomers under long-wave ultraviolet radiation at room temperature. This polymerization produces a free-standing gel that can be incorporated as an adhesive or pre-preg in a composite system. The resulting gel can then undergo cationic, thermal frontal polymerization of the epoxy-based second network to form a cured high-performance resin. The stability of both the liquid mixture and the subsequent gel after the initial polymerization of the first network are discussed. The liquid system retains the capacity to undergo both the gelation and frontal polymerization steps after over and year and a half of storage. The ability to use sequential polymerization steps combined with the stability of the gelled state creates a system that shows promise for creating monolithic shapes, using frontal polymerization, from freestanding gels. Possible applications for this technology include 3D printing, electronics potting, and moldable adhesive films.

Copolyesters As Heat Distortion Temperature Modifiers In Rigid Pvc
Robert Young, May 2018

Exterior Rigid PVC products such as Siding, Cladding, Fencing, Decking and Window profiles are moving to more dark colors to enhance design features. Darker colors pose a challenge for Rigid PVC as infrared radiation absorbtion from the Sun can often raise the temperature high enough to exceed the Heat Distortion Temperature of the PVC causing distortion and sagging. Current technologies such as infrared non-absorbing pigments and coatings and additives, while minimizing the distortion, all have some problems in these exterior applications. Eastman is introducing a new material that solves many of these problems while increasing the Heat Distortion Temperature, enhancing ductility, and little effect on processing. This paper will discuss Eastman’s recent developments.

Heat Stabilising Flexible PVC with Layered Double Hydroxide Derivatives
Dan Molefe, May 2018

The layered double hydroxide ([Mg0.667Al0.333(OH)2](CO3)0.167·mH2O) (LDH) has found application as a heat stabiliser for PVC. Derivatives of this compound were synthesised using a hydrothermal method. Emulsion grade PVC was plasticised with 100 phr diisononyl phthalate and stabilised with 30 phr of the LDH filler additives. Heat stabilities were determined at 200 C. The dynamic heat stability tests were performed on the plastisols using the torque rheometer method. Static heat stability was evaluated on the fused compounds. It was evaluated from discoloration profiles of strips exposed for various lengths of time to heat in a Metrastat oven. The time dependence of hydrogen chloride evolution was followed with a Metrohm Thermomat instrument. The conventional LDH provided the best dynamic heat stability. However, partial replacement of the magnesium with copper significantly delayed the release of volatile HCl. If instead the replacement was done using zinc, better colour retention was achieved.

Temperature Control In Accelerated Laboratory Weathering Testing Of Plastics
Andy Francis, May 2018

Accelerated weathering testing is used widely to evaluate the performance of outdoor polymeric materials. Test standards have been published by multiple international and other standards bodies for performing testing to simulate outdoor environments. These test methods apply ultraviolet (UV) light, high temperature, and water in the form of condensation, humidity, and spray. Control of temperature during accelerated weathering testing is critical for many plastic materials, both to control the rate of photochemical degradation and to avoid unrealistic failure modes from plastics softening or even melting. Unfortunately, maintaining proper specimen temperature during accelerated weathering testing can be challenging and is often not well-understood.

A New Method To Determine TF And Clash Berg Stiffness (ASTM D1043), Using A Rotational Rheometer
Greg Kamykowski, May 2018

Thermo-rheological testing is important for the vinyl industry, as it indicates the temperature range over which a given vinyl formulation can be used in a specific application. A test that has been used for many years is described in D1043, the Clash-Berg stiffness test. The test typically consists of determining at what temperature a material will have a shear modulus of 310.3 MPa (45,000 psi) after 5 seconds of stress applied in torsion. The instrumentation that is used for this test is antiquated and has become difficult to procure. Modern rotational rheometers are well-suited for this test and can be considered as replacements for the older equipment. In this presentation, we will show test results from Clash-Berg tests on TA Instruments DHR rotational rheometer and will demonstrate the excellent correlation between results from the rotational rheometer and the torsion tester.

UV Light Irradiation Of Fibers In Termoplastic Pultrusion For Higher Surface Energy
Christian Kahl, May 2018

Pultrusion is a common way to produce thermoplastic composites reinforced with different kinds of fibers. There are many different opportunities to improve the properties of a thermoplastic material. Different kind of fibers where pultruded in combination with different thermoplastic materials. The fiber content was set to 30wt% comparing the roving strain with the pultruded strain. UV-C light was integrated in the process to improve the fiber matrix adhesion. The pultruded strain was granulated and injection molded to specimen. The samples were tested in tensile and charpy tests. It could be shown that the concentration of oxygen on the surface of a cellulose fiber can be raised by uv light irradiation. Cellulose fibers show low but best changes of properties after the uv treatment.

"Smart Factories": The Future Of Plastics Production With 4.0 Connectivity & Condition Monitoring System (Cms)
Markus Klaus, May 2018

“Smart Factories” are now a real possibility. Many innovations have been realized over the years, but perhaps none as interesting and valuable as Industry 4.0 and Condition Monitoring Systems (CMS). The ability to achieve complete connectivity along with the need to stay in touch have driven innovation to a point that now allows nearly all equipment to speak to each other. The capability to have full internal communication of equipment coupled to the Injection Molding Machine with nearly instant access to streaming data through the internet may have truly created the next generation of “Smart Factories”. The innovations provided by 4.0 connectivity along with CMS, a system which combines technical sensing components with predictive diagnostic analysis, allow factory monitoring at local and global levels.In this presentation we will review the integration of all injection molding components using 4.0 connectivity. This includes a complete automation system along with all the peripherals – and the connection of these cells to a Manufacturing Execution Systems (MES). We will also review Condition Monitoring Systems (CMS) and how they will affect the future of plastics production. The strategy of condition monitoring is a permanent surveillance of the actual condition of the injection molding machine components with the goal of optimizing, and subsequently, keeping the availability and efficiency at an optimal level, thus reducing their life cycle costs.

Effect Of High Speed Twin And Quad Screw Compounding On The Molecular Weight, Molecular Weight Distribution, And Mechanical Properties Of Polyethylene Composites
Mansour Albareeki | Stephen B. Driscoll| Carol F. Barry, May 2018

In this study, a particulate-filled polymer composite was compounded with ultra-high-speed twin and quad screw extruders to investigate the effects of screw speed and intermeshing area on 1) the molecular weight and molecular weight distribution and 2) the mechanical properties of the resultant composites. In general, the quad screw extruder produced significant decreases in the molecular weight of the neat polymers, with greater decreases observed with higher molecular weight polyethylenes. Examination of Gʺ/Gʹ crossover points showed that higher screw speeds produced decreases in molecular weight, but narrowing of the molecular weight distribution. These results were more affected by material system than extruder type. Since the quad screw extruder provided better filler dispersion combined with reductions in molecular weight, it produced no change in elongation at yield and break for filled LDPE, decreases in elongation at yield and increases in elongation at break for MDPE, and increases in modulus that were not significantly affected by screw speed. The flexibility of the materials created Izod impact results that showed no major changes with extruder type or speed.










spe2018logov4.png
  Welcome Page

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net