SPE Library

The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 

Search SPE Library
Keyword/Author:
After Date: (mm/dd/yy)  
 
Sort By:   Date Added  ▼  |  Publication Date  ▼  |  Title  ▼  |  Author  ▼
= Members Only
Conference Proceedings
NANO-COMPOSITES CHARACTERIZATION BY HYPER DIFFERENTIAL SCANNING CALORIMETRY (HYPERDSC)
Andrew W. Salamon, Dave Norman, May 2012
Thermal analytical techniques that are used to characterize nanocomposite formulations. Differential Scanning Calorimetry (DSC, HyperDSC™), Thermogravimetry (TGA), Dynamic Mechanical Analysis (DMA), and the hyphenated technique Thermogravimetry-Gas Chromatography-Mass Spectrometry (TGA-GC-MS), are used to measure nanocomposites. These measurements help ensure that the nanocomposite manufacturing process is stable, reproducible, and reliable. This poster concentrates on the formulation and end product validation through Differential Scanning Calorimetry (HyperDSC™) characterization of the rigid and mobile amorphous fractions of a nanocomposite.
USING SIMULTANEOUS DSC-RAMAN TECHNOLOGY TO STUDY CRYSTALLIZATION OF NYLON 6
Richard Spragg, Geert van den Poel, Lilian Willems, Enrique lozeno Diz, Peng Ye, May 2012
Nylon 6 (polycaprolactam) is a polyamide that is widely used in the form of fibers. There are two crystalline forms, ? and ?. The common ? form has a fully extended planar zigzag conformation. The ? form differs in the hydrogen bonding between chains which produces a twisted gauche conformation about the C-N bond of the amide group. This change in conformation leads to significant differences in the Raman spectra of the two forms. The crystallization behavior of nylon-6 is known to differ between virgin and previously extruded material. DSC measurements show that crystallization from the melt occurs at about 173°C for virgin material but at about 185°C for samples that have previously been extruded. Combined Raman and DSC measurements provide different insights into thermally induced phase changes. In the case of semi-crystalline materials Ramandata gives qualitative information about molecular conformations to complement the purely quantitative information from DSC. We have used this approach to study crystallization in nylon-6.
CO-ROTATING FULLY INTERMESHING TWIN-SCREW COMPOUNDING EXTRUDERS: ADVANCEMENTS FOR IMPROVED PERFORMANCE AND PRODUCTIVITY
Paul G. Andersen, Frank Lechner, May 2012
The co-rotating fully intermeshing twin-screw extruder is the primary production unit for compounding of polymer based materials. It also has had a long term presence in processing material in the chemical and food industry and more recently in pharmaceuticals. While this equipment celebrated its 50th anniversary several years ago and might be considered a “mature” technology, it has not experienced a decline in new developments as might be expected, but rather a significant number of advancements continue to evolve. This paper will highlight several significant developments of the past 10 to 15 years. These are the implementation of high torque (power) designs, the use of increased rpm in conjunction with high torque for improved operating flexibility and productivity, and finally a technology breakthrough for feeding difficult to handle low bulk density materials.
EFFECT OF NANOCLAYS ON THE COMPATIBILITY OF MALEIC ANHYDRIDE-GRAFTED-POLYPROPYLENE/POLY (ETHYLENE OXIDE) BLEND
Abdulhadi A. Al-Juhani, May 2012
This study investigated the effect of surface modification of nanoclays on the compatibility of Maleic Anhydride-grafted polypropylene (PP-g-MA)/poly (ethylene oxide) (PEO) blends. Rheological testing confirmed the network formation of nanaoclays of all types. SEM confirmed the emulsifying role of nanoclays by reducing the PEO domain size. For the case of using dialkyl (C18)-modified nanoclays, mechanical testing showed that the elastic modulus and the toughness were respectively improved by 20% and 55% compared to unfilled samples.
TEMPERATURE DEPENDENCE OF THE INTERFACIAL SHEAR STRENGTH IN GLASS–FIBER POLYPROPYLENE COMPOSITES INVESTIGATED BY A NOVEL SINGLE FIBER TECHNIQUE
James L. Thomason, Liu Yang, May 2012
To obtain information on the temperature dependence of the interfacial strength (IFSS) in glass – polypropylene composites a thermomechanical analyser was adapted to enable microbond testing to be carried out in a well controlled temperature environment. Test results obtained by TMA-microbond testing showed excellent comparability with those obtained by normal microbond testing. The of IFSS of glass – polypropylene was measured from -40°C up to 100°C. The IFSS showed a highly significant inverse dependence on testing temperature.
COMPOUNDING EXTRUSION OF POLYPROPYLENE CARBON NANOTUBE COMPOSITES: OPTIMISING AND ECONOMIZING PROCESS WITH A COMMERCIAL PERSPECTIVE – A CASE STUDY
Daniel Berkowitz Zamora, Shyam Sathyanarayana, Patrick Weiss, Christof Hübner, Jan Diemert, Frank Henning, Peter Elsner, May 2012
Compounding extrusion of Polypropylene-Carbon nanotube composite is presented as a case study with Design of Experiments approach to identify best processing parameters for optimum dispersions and conductivity. Influence of Specific Mechanical Energy input on resulting morphology and volume resistivity of extruded strands are analyzed with statistical viewpoints. Resistances of the melt are measured with an online process monitoring approach and correlated with measurements on extruded strands. This aids process planning, and economization.
INVESTIGATIONS OF THE BRITTLE FAILURE CAUSED BY AN ENVIRONMENTAL STRESS CRACKING OF A PLASTIC ENCLOSURE
Ahamed Shabeer, Gerald F. Zamiski, May 2012
The causes of a drastic reduction in the service life of plastic enclosures molded from an acrylonitrilebutadiene- styrene (ABS) resin have been investigated. The mechanism and type of failure have been deduced from a detailed morphological examination of the fracture surface. Various factors responsible for a rapid failure of the enclosure have been identified. Analytical testing such as infrared spectroscopy and differential scanning calorimetry were performed to identify a specific material characteristic responsible for the failure. The results obtained during the evaluation indicated that the failure was due to environmental stress cracking, which occurred as a consequence of the presence of an incompatible chemical and assembly stress. The nature of the chemical agent was found and its effect on the properties of the ABS is discussed.
FLOW BEHAVIOR OF DIFFERENT POLYETHYLENES IN CAPILLARY FLOW
Evan Mitsoulis, Thanasis Zisis, Mahmoud Ansari, Savvas G. Hatzikiriakos, May 2012
Three major polyethylene (PE) engineering plastics, linear-low-density (LLDPE), low-density (LDPE) and high- density (HDPE) are studied in capillary flow. The purpose is to find experimentally and predict numerically their flow behaviour, namely the pressure drop in flow through tapered dies. This behavior is related to their individual rheological and flow properties. Using a series of capillary dies having different diameters D and length-to-diameter L/D ratios, a full rheological characterization has been carried out, and the experimental data have been fitted with the viscoelastic K-BKZ/PSM model. The branched LDPE has a strong pressure-dependence of viscosity, with a pressure-dependent coefficient ?p. For the linear LLDPE and HDPE melts, the pressure-dependence of viscosity is weak, but slip at the wall is strong and affects their flow behaviour. Thermal effects due to viscous dissipation are included but are rather mild. It is found that the viscoelastic simulations are capable of reproducing the experimental data well, in the whole range of apparent shear rates and L/D ratios.
SOME ISSUES ARISING IN FINDING THE DETACHMENT POINT IN CALENDERING OF PLASTIC SHEETS
Evan Mitsoulis, May 2012
Calendering is a process for producing plastic sheets of a desired final thickness and appearance. The thickness of the exiting sheet during a calendering operation is uniquely found by the Lubrication Approximation Theory (LAT) and the application of the Swift boundary conditions, which dictate that both the pressure and its axial derivative are zero at detachment. This cannot be used in a 2-D analysis of the process, where the detachment point is the anchor of a free surface, and hence a singular point where both the pressure and the stresses go through numerical oscillations. This difficulty can be circumvented by using the Boundary Element Method (BEM), which uses as primary variables velocities and tractions, and thus avoids pressures and stresses. Then the detachment point is found as the point where the tangential traction becomes zero. Numerical tests undertaken here with the Finite Element Method (FEM) show that the LAT results can be used as a good approximation for the detachment point, which is then fixed. Comparisons with 2-D BEM results show a good agreement for all flow field variables. However, the exact position of the detachment point in a 2-D FEM analysis is still elusive, since for viscous polymer melts the contact angle is not known and should be part of the solution. Some thoughts are given about how to tackle this still unresolved issue, based on double nodes with discontinuous velocities and pressures.
MISCIBILITY CHARACTERIZATION OF INDOMETHACIN AND EUDRAGIT® E PO BY RHEOLOGICAL AND THERMAL ANALYSIS
Huiju Liu, Herman Suwardie, Xueyan Zhang, Peng Wang, Costas G. Gogos, May 2012
The miscibility between drug indomethacin and excipient Eudragit® E PO were extensively characterized by rheological and thermal analysis. The evolution of glass transition temperature and activation energy with indomethacin concentration indicates the existence of overall positive deviation which represents anti-plasticization effect. The rheological analysis is in agreement with the thermal analysis, and both methods indicate that the miscibility between them is very good for indomethacin concentrations up to 60~70%.
BLOWN FILMS OF NANOCOMPOSITES PREPARED FROM ORGANOCLAY/COPPER-NANOPARTICLE POLYPROPYLENE
Pitchaya Naneraksa, Ratanawan Magaraphan, May 2012
Polypropylene blown film containing 1 wt% nanoparticles was fabricated which organoclay and copper nanoparticles were incorporated for barrier and antimicrobial purpose. Effect of copper nanoparticle content (5, 10, 15 and 20 wt% of total nano-fillers) on clarity and mechanical properties of polypropylene nanocomposite film was investigated. Nanocomposite PP films were fabricated via water-quenched blown film extrusion. A sodium neutralized ethylene-methacrylic acid ionomer of 2 phr was used to modify compatibility between polypropylene and nano-fillers.
ENHANCED DIELECTRIC LIFETIME OF MULTILAYERED PC/PVDF-HFP FOR CAPACITOR APPLICATIONS
Z. Zhou, M. Mackey, E. Baer, May 2012
The dielectric lifetime and breakdown mechanism of PC/PVDF-HFP systems were studied under constant DC field. The 32 L and 256 L PC/PVDF-HFP systems show two orders of magnitude longer dielectric lifetime compared with blend system of PC/PVDF-HFP. It is attributed that the layered structure can impede the breakdown process by deflecting the fracture propagation pathway. The DC resistivity of PC/PVDF-HFP systems was measured and correlates well with the dielectric lifetime in PC/PVDF-HFP system, which implied that the DC resistivity is also an important factor contributing to the enhancement of dielectric lifetime of the layered films.
COMPARATIVE THERMAL AND RHEOLOGICAL STUDY OF AROMATIC AND ALIPHATIC POLYAMIDE NANOCOMPOSITES AND FILMS
Matyam Fereydoon, Seyed H. Tabatabaei, Abdellah Ajji, May 2012
In this study, thermal and rheological properties of polyamide 6 (PA6), poly (m-xylene adipamide) (MXD6) and their commercial nanocomposites (4 wt.% clay) were studied. Dynamic rheological experiments were carried out for both neat resins and corresponding nanocomposites at different temperatures. Rheological measurements were conducted using a strain-controlled rheometer. Crystallinity and thermal transitions of the materials are established via both DSC and XRD techniques. Oxygen transmission rates were also measured and normalized by the films thickness.
IMPROVING FILM DIE FLOW UNIFORMITY USING OPTIMIZATION METHODS COUPLED WITH FINITE ELEMENT CFD ANALYSIS
Patrick C. Lee, Laura Dietsche, Joseph Dooley, Sumeet Parashar, May 2012
This study shows how the flow uniformity from a film die can be improved by modifying the geometry of the die using a three dimensional finite element optimization technique. In this study, various optimization strategies were used to optimize the geometry to meet the desired objectives of uniform flow at the die exit and minimal pressure drop. Finite element simulations using the numerically optimized geometry predict a more uniform flow than simulations using the baseline geometry. However, some of the numerically optimized die geometries obtained in this study would be impractical to fabricate. Thus we see the power of CFD-based optimization methods to lead towards potentially better performing options; but we also see the necessity of understanding both the die design technology and fabrication techniques in order to analyze the practicality of the proposed optimized solutions. This knowledge can be used to redirect the optimization towards more practical solutions through the use of geometric constraints.
COMMERCIALIZATION ROADMAP OF BIOPOLYMERS & BIOCOMPOSITES
Sam McCord, Mike Parker, May 2012
The advent of new base raw materials composed of recycled post consumer/post industrial plastics combined with organic bio fibers that up to now had no value added/sustainable use, has created a global market for a new classification of materials, Bio Fiber Composites. Fundamentally, these composites reduce the hydrocarbon content, (oil) replaced with natural fillers in the form of organic “renewable.” This family of materials is best suited to replace pure polymers, and drives the green, sustainable shift of achieving a balance of physical and mechanical properties to produce the goods and components needed across the complete product landscape. Any product that is injection molded, extruded, thermoformed, or rotationally molded today, can be replaced with a natural organic filled BioComposites Materials. MCG BioComposites, LLC has been formed to supply this place in the industry. This paper will demonstrate the uses and commercial applications for various biomasses, i.e., corn cob fiber, flax fiber and wheat starch.
MODELING AND SIMULATION OF THERMALLY AND FLOW INDUCED CRYSTALLIZATION OF SEMI-CRYSTALLINE POLYMERS
Yue Mu, Guoqun Zhaoi, Xianghong Wu, May 2012
The simulation of thermally and flow induced crystallization behavior of semi-crystalline polymers is of great engineering significance in polymer processing like injection, blow molding and extrusion. However, its key technology for practical application remains to be difficult. In the study, the mathematical model of three- dimensional thermally and flow induced crystallization of polymer melts obeying Phan-Thien and Tanner (PTT) constitutive model is established. A penalty finite element/finite difference method is introduced to solve the nonlinear governing equations. The computation stability is improved by using the discrete elastic-viscous split stress (DEVSS) algorithm incorporating the streamline upwind scheme. A modified Schneider’s approach is employed to discriminate the relative roles of the thermal and the flow state on the crystallization phenomenon. Two driving causes for the crystallization of polypropylene in extrusion process including the thermal and the flow state are investigated. Both the crystalline distribution and crystalline size of polypropylene are obtained based on the proposed mathematical model and numerical scheme.
MOLD FLOW ANALYSIS OF MOBILE PHONE CASE MADE BY TPS (THERMOPLASTIC STARCH)/(PC/ABS)
Sheng-Ju Liao, Shihn-Juh Liou, Chih-Jen Chang, May 2012
Mold flow analysis of mobile phone case was used in this study to evaluate the intrinsic characteristics of biomass materials how to influence the parameters of injection mold process and the outward appearance of product. Two materials were selected, one is TPS/(PC/ABS) biomass-based material developed by ITRI, and the other is commercial petrochemical plastic PC/ABS. In addition to evaluate the difference between these two materials in the injection mold process and dimensional stability, carbon emissions during this injection mold process were also calculated. Above results will show advantages and shortcomings of this newly developed TPS/(PC/ABS) biomass-based material.
CHAIN EXTENSION OF RECYCLED POLYAMIDES : HOW TO INCREASE THE AMOUNT OF RECYCLED PA IN THE AUTOMOTIVE INDUSTRY
Elodie Gaouyat, May 2012
The present work attempted to implement reactive compatibilisation of blends of recycled engineering plastics, more particularly the case of recycled PA66 contaminated by recycled PA6. Low molecular weight, high Tg Styrene-Maleic Anhydride copolymers were tested as chain extenders / compatibilizers. It appeared that the addition of 2% by weight of SMA to an incompatible system of recycled PA6 and PA66 improved both ductility and impact performance by factors of at least 10 and 1.5 respectively. Moreover, high Tg SMA improved performances at elevated temperature, partly due to its ability to effectively crosslink but also because of its inherent heat resistance.
THICKNESS PROFILE EFFECTS ON THE BUILD-UP PROCESS OF FILM-ROLLS IN THE WINDING PROCESS
Johannes Wortberg, Felix A. Heinzler, May 2012
A high percentage of today’s blown-film-extrusion-machines is equipped with a reversing system. The reversing draw-up unit is supposed to rearrange tolerances of the thickness profile on the film-roll within the winding process. Most process setups in the blown-film-extrusion production have a standardized reversing speed or do not use the reversion. A new simulation model developed at the University of Duisburg-Essen can show the critical effects of these setups in the build-up of film rolls and links them to detected defects in today’s production.
CARBON NANOFIBER/POLYETHYLENE NANOCOMPOSITES FOR ESD AND EMI APPLICATIONS
Mohammed Al-Saleh, Uttandaraman Sundararaj,, May 2012
Vapor grown carbon nanofiber (VGCNF) / High density polyethylene (HDPE) conductive nanocomposites were prepared by melt mixing. The nanocomposites electrical and electromagnetic (EMI) shielding properties were studies as function of filler concentration. The electrical resistivity of 1.5 vol% VGCNF/HDPE nanocomposite was 105 Ohm-cm indicating that this nanocomposite is suitable for electrostatic discharge (ESD) protection applications. In the 0.1-1.5 GHz frequency range, 2 mm thick plates made of HDPE filled with 5 vol% VGCNF showed an EMI SE of 20 dB, this level of attenuation is adequate for laptop and desktop computers shielding.


This item is only available to members

Click here to log in

If you are not currently a member,
you can click here to fill out a member application.

We're sorry, but your current web site security status does not grant you access to the resource you are attempting to view.




spe2018logov4.png
  Welcome Page

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net