SPE Library

The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 

Search SPE Library
Keyword/Author:
After Date: (mm/dd/yy)  
 
Sort By:   Date Added  ▼  |  Publication Date  ▼  |  Title  ▼  |  Author  ▼
= Members Only
Conference Proceedings
FRACTURE BEHAVIOR OF JUTE/PP, JUTE/GLASS FIBER/PP INJECTION MOLDINGS
Tomoko Ohta , Tohru Morii , Yew Wei Leong , Hiroyuki Hamada, May 2010
This study deals with the fracture behavior and acoustic emission (AE) characteristics of jute fiber reinforced polypropylene composite. In general, the mechanical properties of natural fiber reinforced composites are not so high, and it is demanded to enhance them for actual application. Therefore, jute and glass fibers hybrid PP ([GF/JF]/PP) composites were developed and the effect of fiber content on the tensile properties and fracture behavior was discussed through the AE characteristics. In [GF/JF]/PP composites the optimum fiber content for the improvement of tensile strength was determined, and the tensile strength depended on the initiation of fracture detected by AE.
SANDWICH STRUCTURE OF REINFORCED MATERIAL PREPARED BY INJECTION-PRESS MOLDING
Osamu Segawa , Hiroyuki Hamada, May 2010
Conventional sandwich molding process with a core layer of a plate type reinforced material is utilized with a special type mold attached slide cores. We studied a low cost process to mold a sandwich structure by performing an injection-press molding process that was one process of an injection compression molding process. This sandwich molding process was constructed with assembled a standard injection molding process and an injection-press molding process and was controlled a position of a core layer of a plate type reinforced material. As a result it was confirmed that this sandwich molding process was effective for controlling a position of a core layer of a plate type reinforced material and for improving strength of a sandwich structure. In addition this sandwich molding process was effective for reducing thickness of a sandwich structure and was contributed to lighten weight of a sandwich structure.
SANDWICH STRUCTURE OF REINFORCED MATERIAL PREPARED BY INJECTION-PRESS MOLDING
Osamu Segawa , Hiroyuki Hamada, May 2010
Conventional sandwich molding process with a corelayer of a plate type reinforced material is utilized with aspecial type mold attached slide cores. We studied a lowcost process to mold a sandwich structure by performingan injection-press molding process that was one process ofan injection compression molding process. This sandwichmolding process was constructed with assembled astandard injection molding process and an injection-pressmolding process, and was controlled a position of a corelayer of a plate type reinforced material. As a result, it wasconfirmed that this sandwich molding process waseffective for controlling a position of a core layer of aplate type reinforced material and for improving strengthof a sandwich structure. In addition, this sandwichmolding process was effective for reducing thickness of asandwich structure and was contributed to lighten weightof a sandwich structure.
SIMULATION DRIVEN MEDICAL PACKAGE DEVELOPMENT
Hossam M. Metwally, May 2010
The objective of this work is to demonstrate the concept of 'simulation driven package development'. The concept involves not only simulating the structural behavior of the medical package (e.g. under top loading), but also predicting the package material distribution due to the manufacturing process conditions and tying that to the structural analysis. The structural analysis will thus take the more physical, and usually non-uniform, part material thickness distribution into consideration. The concept is highlighted through a case study.In this study, numerical simulation is used to model the thermoforming process of a medical tray. Two different thermoforming processes are examined. The first is a simple drape forming technique where the sheet is formed over a male mold through vacuum. In the second, aiming at obtaining a more uniform material distribution, prestretching of the sheet is applied prior to the vacuum forming. The resulting material distribution is compared with that of the simple drape forming. The resulting degree of warpage at the end of the cooling step for the two cases is compared. Also, the effect of the different forming processes on the top loading behavior of the tray is studied.The resulting material distribution from each forming process is taken into account when performing the virtual structural test. Thus the concept of 'simulation driven package development' is highlighted.
FIBER LASER WELDING OF PLASTICS USING A SOLID HEAT SINK TRANSPARENT TO THE LASER BEAM TO PREVENT THERMAL DAMAGE
Satoshi Nagai, Akira Okamura, Wongsriraksa Patcharat, Kazushi Yamada, Yew Wei Leong, Hiroyuki Hamada, May 2010
This paper deals with the fiber laser welding of overlapped engineering plastic sheets, using a solid heat sink transparent to the laser beam to prevent thermal damage. A fiber laser whose wavelength is 1.9 ?¬m is used for the welding. It is hard to join transparent engineering plastics not using any laser-absorbing pigments with ordinary laser welding. So this novel laser welding procedure, which prevents thermal damage to the surface of the plastic, was proposed. A solid heat sink is placed in contact with the irradiated polymer sheet, helping to prevent thermal damage of the film surface. Thus, the proposed fiber laser welding system is successful in welding plastic sheets which are difficult to weld with CO2 laser.
FILM INSERT MOLDING BASED ON POLYOXYMETHYLENE AND POLY(LACTIC ACID): MORPHOLOGICAL CHARACTERISTICS AND INTERFACIAL ADHESION PROPERTIES
Satoshi Nagai , Akira Okamura, May 2010
The combination of polyoxymethylene (POM) and poly(lactic acid) (PLA) is possible due to their compatibility. Film insert moldings were fabricated by using PLA as the film while neat POM PLA and POM/PLA blends were as the substrate resin. The interfacial adhesion properties between the film and substrate were determined by means of micro-cutting analyses. Molding conditions were varied in order to determine the effects of substrate crystallinity and various morphological structures on the interfacial adhesion characteristics. The regions adjacent to the film-substrate interface were observed through ATR infrared spectroscopy and a correlation between structure and interfacial compatibility was attempted. Both POM and PLA traces could be found at the interfacial region which enabled the determination of the width of the interface. It was found that specimens with thick interfacial regions exhibit high interfacial strength.
FILM INSERT MOLDING BASED ON POLYOXYMETHYLENE AND POLY(LACTIC ACID): MORPHOLOGICAL CHARACTERISTICS AND INTERFACIAL ADHESION PROPERTIES
Satoshi Nagai , Akira Okamura , Wongsriraksa Patcharat , Kazushi Yamada , Yew Wei Leong , Hiroyuki Hamada, May 2010
The combination of polyoxymethylene (POM) and poly(lactic acid) (PLA) is possible due to their compatibility. Film insert moldings were fabricated by using PLA as the film while neat POM, PLA and POM/PLA blends were as the substrate resin. The interfacial adhesion properties between the film and substrate were determined by means of micro-cutting analyses. Molding conditions were varied in order to determine the effects of substrate crystallinity and various morphological structures on the interfacial adhesion characteristics. The regions adjacent to the film-substrate interface were observed through ATR infrared spectroscopy and a correlation between structure and interfacial compatibility was attempted. Both POM and PLA traces could be found at the interfacial region, which enabled the determination of the width of the interface. It was found that specimens with thick interfacial regions exhibit high interfacial strength.
SHARKSKIN MELT FRACTURE CHARACTERISTICS OF POLY (HYDROXY BUTANOIC ACID) COPOLYMERS
I. Nishi, S. Matsubara, Y. W. Leong, H. Hamada, A. Goto, May 2010
Recent advances have rendered bio-based and biodegradable PHB (poly hydroxybutanoic acid) copolymers suitable for many extrusion applications. The high molecular weight and narrow distribution of melt relaxation times of these polymers can sometimes cause sharkskin melt fracture to occur during extrusion. This may be a limiting factor for their wide-spread applicability. This presentation will discuss the characterization of sharkskin melt fracture of these polymers using capillary rheometry including the identification, for the first time, a critical criterion for their occurrence.
IMPROVEMENT OF IMPACT PROPERTIES OF RECYCLED POLY(ETHYLENE TEREPHTHALATE) (PET)INJECTION MOLDINGS RECYCLED POLY(ETHYLENE TEREPHTHALATE) (PET)INJECTION MOLDINGS IMPROVEMENT OF IMPACT PROPERTIES OF R
N. Kunimune , S. Tamada , T. Nagasawa , Y. Makata , Y.W.Leong , H. Hamada, May 2010
Recycling PET is emerging issue for protecting the earth environments and using petrochemical products effectively. R-PET has been used in the form of film fibers and sheet. In the industries R-PET injection moldings are demanded however there are still some problems in injection molding pellet making and properties of products. The most important problem is low impact strength. In this paper we found effective modifier of R-PET to increase impact strength. The effects of modifier contents on not only impact strength but static strength and rigidity were discussed.
IMPROVEMENT OF IMPACT PROPERTIES OF RECYCLED POLY(ETHYLENE TEREPHTHALATE) (PET)INJECTION MOLDINGS
N. Kunimune , S. Tamada , T. Nagasawa , Y. Makata , Y.W.Leong , H. Hamada, May 2010
Recycling PET is emerging issue for protecting the earth environments and using petrochemical products effectively. R-PET has been used in the form of film, fibers, and sheet. In the industries R-PET injection moldings are demanded, however there are still some problems in injection molding, pellet making and properties of products. The most important problem is low impact strength. In this paper we found effective modifier of R-PET to increase impact strength. The effects of modifier contents on not only impact strength but static strength and rigidity were discussed.
THE EFFECT OF LOW-ENERGY ELECTRON BEAM IRRADIATION ON PROPERTIES OF LOW-DENSITY POLYETHYLENE
Robert Barsotti, May 2010
The impact of low-energy electron beam irradiation on mechanical properties of Low Density Polyethylene was investigated. The electron energy was 150keV with dose ranging from 5 to 1000 kGy. The properties were evaluated through tensile, drop dart impact, and solvent resistance testing. The correlation between mechanical properties and morphological changes was also studied using melt flow index measurements and differential scanning calorimetry. Impact resistance was found to drastically improve and the elongation at break decreased with increasing dose. This indicates that cross-linking occurred upon electron irradiation and was confirmed by the results of crystallization and melt flow index measurements.
NANOSTRENGTH BLOCK COPOLYMERS FOR EPOXY TOUGHENING
Robert Barsotti, May 2010
Due to their high strength excellent high temperature properties and good adhesion to many surfaces epoxies are extremely valuable engineering materials in composite adhesive coating and electronic applications. Epoxies however suffer from a very low toughness. Arkema’s controlled radical and anionic polymerization technology has been used to synthesize block copolymers additives which provide excellent toughening to epoxies without sacrificing modulus or glass transition temperature. By incorporating functionality into the epoxy miscible block of the polymer nanostructuration of these polymer additives are achieved in a wide range of epoxy systems resulting in excellent thermal and mechanical properties.
NANOSTRENGTH BLOCK COPOLYMERS FOR EPOXY TOUGHENING
Robert Barsotti, May 2010
Due to their high strength, excellent high temperature properties and good adhesion to many surfaces, epoxies are extremely valuable engineering materials in composite, adhesive, coating, and electronic applications. Epoxies, however, suffer from a very low toughness. Arkema's controlled radical and anionic polymerization technology has been used to synthesize block copolymers additives, which provide excellent toughening to epoxies without sacrificing modulus or glass transition temperature. By incorporating functionality into the epoxy miscible block of the polymer, nanostructuration of these polymer additives are achieved in a wide range of epoxy systems, resulting in excellent thermal and mechanical properties.
IONOMERS WITH ENVIRONMENTALLY RESPONSIVE SELF-REGULATED BREATHABILITY AND THEIR APPLICATIONS FOR HOUSE AND ROOF LINERS
Yushan Hu, Debbie Chiu, Jose M. Rego, Hongyu Chen, Benjamin Poon, May 2010
Environmentally responsive self-regulated gas transmission is achieved by smart vapor barrier (SVB) ionomers. Their moisture transmission changes reversibly from barrier to transmitter as the environmental relative humidity changes. This provides a means to regulate the moisture content within enclosed structures, such as buildings, and enables effective dissipation of moisture to mitigate problems from moisture condensation. It also provides an effective draft barrier to minimize heat transfer for energy conservation. WUFI (W??rme Und Feuchte Instation??r) modeling, methodology pioneered by the Frauhofer Institute, can be used to calculate the coupled heat and moisture transfer in building components containing smart vapor barrier membrane.
STRUCTURE-PROPERTY RELATIONSHIPS OF POLYOLEFIN BASED ELASTIC FIBERS
Yushan Hu , Debbie Chiu , Jose M. Rego , Hongyu Chen , Benjamin Poon, May 2010
The DOW XLA™1 fiber is a unique elastic fiber that is olefin-based and designed for durable comfortable stretch performance with excellent heat and chemical resistance. The elastomeric properties of DOW XLA™ elastic fiber result from superimposed molecular networks of flexible polymer chains with three types of molecular junctions: entanglements crystallites and covalent crosslinks. DOW XLA™ elastic fibers are made by meltspinning. This paper discusses how polyolefin elastomer properties fiber spinning conditions and fiber crosslinking enable the design of polyolefin elastomer fibers with properties useful in elastic apparel manufacture.
STRUCTURE-PROPERTY RELATIONSHIPS OF POLYOLEFIN BASED ELASTIC FIBERS
Yushan Hu , Debbie Chiu , Jose M. Rego , Hongyu Chen , Benjamin Poon, May 2010
The DOW XLAƒ?›1 fiber is a unique elastic fiber that is olefin-based and designed for durable, comfortable stretch performance with excellent heat and chemical resistance. The elastomeric properties of DOW XLAƒ?› elastic fiber result from superimposed molecular networks of flexible polymer chains with three types of molecular junctions: entanglements, crystallites and covalent crosslinks. DOW XLAƒ?› elastic fibers are made by meltspinning. This paper discusses how polyolefin elastomer properties, fiber spinning conditions and fiber crosslinking enable the design of polyolefin elastomer fibers with properties useful in elastic apparel manufacture.
NEXT GENERATION HDPE FOR BLOW MOLDING APPLICATIONS
Mridula (Babli) Kapur, May 2010
High density polyethylene (HDPE) is widely used to fabricate blow molded articles for rigid packaging as well as for other market segments such as industrial and chemical containers automotive home and recreation. The drive to reduce packaging cost as well as minimize impact on the environment has increased the emphasis on light weight packaging. A next generation (NG) of HDPE resins was developed through selective molecular architecture modification to offer a unique combination of easy resin processing on existing extrusion blow molding equipment and a superior balance of physical properties which allow blow molded articles to be light weighted. A higher percentage of post consumer recycle can also be incorporated while meeting the blow molded article performance requirements.
AN ENGINEERING APPROACH TO THE CORRECTION OF ROTATIONAL FLOW CALCULATIONS FOR SINGLE-SCREW EXTRUDERS
Minoru Ogasahara, Manabu Shidou, Shigeru Nagata, Hiroyuki Hamada, Leong Yew Wei, May 2010
Simulation of single-screw extruder screws using the standard pseudo-Newtonian method is known to deviate from measured performance. Part of this deviation is caused by the calculation of the drag flow rate. Previous research has shown that the calculation of the drag flow rate using this method is higher than that in the actual channel, causing the pressure gradient to be incorrectly adjusted to compensate for the error in the drag flow term. The research provided here provides the correction factors for rotational flow (historically known as drag flow) such that axial pressure gradients can be quickly and accurately calculated.
INFLUENCE OF LUMINESCENT COMPOUND DERIVATE OF ALDOL CONDENSATION IN PVC DEGRADATION INFLUENCE OF LUMINESCENT COMPOUND DERIVATE OF ALDOL CONDENSATION IN PVC DEGRADATION
S. Vázquez-Rodríguez , V. A. González-González , R. Benavides-Cantú , E. M. Arias-Marin , I. Moggio, May 2010
New conjugated oligomers have been synthesized through aldol condensation from chemical reaction between different kinds of ketone and aromatic dialdehydes. These novel compounds showed absorption in UV-vis spectrum from 275 to 525 nm. In this work we reported the synthesis of an organic compound prepared by reaction of dimethyl sulfoxide (DMSO) and terephthalaldehyde (TPA) following a typical aldol condensation route. The luminescent adduct was mixed with polyvinyl chloride (PVC) in solution (in THF). Films of PVC-adduct were evaluated in a degradation chamber and changes in chemical structure were evaluated by FTIR in where an increase of carbonyl band was larger than control sample. This new compound can be used to promote degradation of PVC under UV radiation.
INFLUENCE OF LUMINESCENT COMPOUND DERIVATE OF ALDOL CONDENSATION IN PVC DEGRADATION
S. Vázquez-Rodríguez , V. A. González-González , R. Benavides-Cantú , E. M. Arias-Marin , I. Moggio, May 2010
New conjugated oligomers have been synthesized through aldol condensation from chemical reaction between different kinds of ketone and aromatic dialdehydes. These novel compounds showed absorption in UV-vis spectrum from 275 to 525 nm. In this work, we reported the synthesis of an organic compound prepared by reaction of dimethyl sulfoxide (DMSO) and terephthalaldehyde (TPA), following a typical aldol condensation route. The luminescent adduct was mixed with polyvinyl chloride (PVC) in solution (in THF). Films of PVC-adduct were evaluated in a degradation chamber and changes in chemical structure were evaluated by FTIR, in where an increase of carbonyl band was larger than control sample. This new compound can be used to promote degradation of PVC under UV radiation


This item is only available to members

Click here to log in

If you are not currently a member,
you can click here to fill out a member application.

We're sorry, but your current web site security status does not grant you access to the resource you are attempting to view.




spe2018logov4.png
  Welcome Page

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net