SPE Library

The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 

Search SPE Library

Sort By:  Date Added   Publication Date   Title   Author

Conference Proceedings

Comparison of Block and Random Ethylene-Octene Copolymers Based on the Structure and Elastomeric Properties
H. Wang, A. Taha, S.P. Chum, A. Hiltner, E. Baer, May 2007

The structure and elastomeric properties of the novel olefinic block copolymers (OBCs) were studied by DSC, WAXS, AFM combined with stress-strain, and strain recovery measurement. Their structure and properties were compared with the conventional statistical ethylene-octene (EO) copolymers. The OBCs showed higher strain recovery than the statistical EO copolymers, which is attributed to their unique crystalline morphology. AFM and WAXS studies revealed the elastic" spherulites in OBCs."

Miscibility of Novel Block Copolymers
A.R. Kamdar, H. Wang, D.U. Khariwala, S.P. Chum, H.Y. Chen, A. Hiltner, E. Baer, May 2007

The miscibility of novel olefinic block copolymers (OBCs) with random ethylene-octene (EO) copolymers was studied using blends of two homogeneous random EO copolymers as a model system. The critical comonomer content difference for miscibility between OBC and random EO blend was observed to be lower than that for the blend of two random EO copolymers. The OBC and random EO blend also exhibited a broader partial miscibility window. Interaction parameters for blends of two EO copolymers were extracted from partially miscible blends.

Crystallization Kinetics of Olefinic Block Copolymers
D. Khariwala, A. Taha, S. Chum, A. Hiltner, E. Baer, May 2007

The effect of the blocky chain architecture on spherulite growth rate and bulk crystallization kinetics of novel ethylene-octene block copolymers is described. These copolymers form space-filling spherulites even when the crystallinity is as low as 7 %. Spherulite growth rates were analyzed by Lauritzen-Hoffman theory and the bulk crystallization kinetics were subjected to Avrami analysis. Comparison with random copolymers showed that the blocky architecture imparts a substantially higher crystallization rate.

Utilizing the Power of Three to Enhance Student Learning
David E. Finlow, May 2007

Considering a class to comprise three parts: introduction of fundamental principles during the lecture; assignment of a practical problem, requiring application of these principles; provision of a detailed solution at the beginning of the subsequent class, student involvement and learning has been significantly improved.A typical polymer processing class would consist of deriving the equations for steady-state, pressure-driven flow of a Newtonian fluid through a circular cross-section, allowing assignment of a melt-spinning problem.

Study on Crystal Structures of Isotactic Polypropylene Processed by Injection Molding
Dong Binbin, Liu Junyi, Shen Changyu, Cheng Jingbo, Liu Chuntai, May 2007

The crystallinity and crystallite size of injection molded isotactic polypropylene was measured by wide angle X-ray diffraction(WAXD) and the distinct skin-core morphology was visible under a polarizing optical microscope. The results show that the crystal structures are dependent on the injection molding processing conditions. The crystallinity and crystallite size decreases with the distance from the gate. The skin layer thickness is thinner with the higher injection temperature.

In-Mold Part Shrinkage Rate Measurement
Kurt A. Koppi, Mark A. Barger, Dane Chang, Chad Shields, May 2007

An on-line technique for quantifying part shrinkage rate in the mold has been developed. The technique consists of measuring post-hold cavity pressure decay rate inside the mold during the injection molding process. A comparison of the technique as applied to amorphous and semi-crystalline polymers will be presented.

Determination of Shear Viscosity and Shear Rate from Pressure Drop and Flow Rate Relationship in a Rectangular Channel
Younggon Son, Dong Hak Kim, May 2007

In this study, we present a unique approach to calculate the shear viscosity and shear rate with the pressure drop and flow rate data from a channel having a rectangular cross-section with a height-to-width ratio (H/W) of close to one. The derived equation was verified with experimental data from rectangular dies whose height-to-width ratio (H/W) ranges from 0.1 to 1. It was confirmed that the proposed approach is reliable for calculation of the shear viscosity and shear rate from the flow data in a rectangular channel.

Improvement of Transparency and Processing Properties of Hard TPU Materials
Oliver Henze, Erik Waßner, Rüdiger Krech, May 2007

A statistical model is discussed which will help to understand the sequence length distribution of thermoplastic polyurethane block copolymers. Using this model processing range and transparency of some TPU materials were correlated to the theoretical segment length distribution.Considering this analysis some new Elastollan® 1200 materials (E 1200 materials) were developed. Due to the wide processing range and the high transparency of these new materials they are suitable to an increased number of applications.

Effects of Process Conditions and Glass Fiber Content on Part Quality of Glass Fiber-Reinforced PP Part
Wang Lixia, Zhuang Weiguo, Li Qian, Shen Changyu, May 2007

Shrinkage and warpage are two important quality indexes of the plastic of fiber-reinforced injection molded parts. The effects of different processing parameters and the percentage of glass fiber on volumetric shrinkage and warpage of the parts have been investigated based CAE analysis. An L16(45) orthogonal array design was conducted analyze the influence of factors and fiber content on shrinkage and warpage, and improve the quality of the injection molded polypropylene part.

Designing Plastic Products for Injection Molding
Jan Spoormaker, Anton Heidweiller, May 2007

Designing plastic products for injection molding requires knowledge about strength of materials, heat transfer, mold making, injection molding and costs.The product design can then be optimized for minimal mold and processing costs. Students of Industrial Design Engineering at the Delft University of Technology are educated in designing consumer products for small series till mass production. Cost awareness is important and in the lectures we present practical engineering design rules.

Effect of Thermal History on Surface Roughness and Light Transmission of Biaxially Oriented Polypropylene Films
Y.J. Lin, P. Dias, J. Van Dun, S.P. Chum, A. Hiltner, E. Baer, May 2007

The effect of preform thermal history on the transparency of biaxially-oriented polypropylene (BOPP) films was investigated. Preform sheets were prepared by compression molding with careful variation of cooling rates, and subsequently were oriented using a Brückner Karo IV stretcher. The small and large-scale surface roughnesses of oriented films were determined by atomic force microscopy (AFM) and optical microscopy, and correlated with light transmission measured by UV-Vis spectrometry.

An Experimental Investigation into Solids Feeding Characteristics of a Single Piece Barrel with Integral Feedport Design vs a Standard Two Piece Water Cooled Feedblock and Barrel Configuration.
Walter S. Smith, Robert A. Sickles, Luke A. Miller, Timothy W. Womer, May 2007

Differences in solids conveying, screw pressure profile generation, output and melt temperature varies between single piece barrel with integral feedport design and two piece water cooled feedblock and barrel designs. Two different resins will be studied using the same screw design for each barrel configuration.

Crystallinity Development during Spinning of Polypropylene Part I: On-Line Measurements Using Raman
Rajesh Paradkar, Rajen Patel, Ed Knickerbocker, Antonios Doufas, May 2007

Application of Raman spectroscopy to obtain crystallinity data, on-line, during fiber spininning of polypropylene polymers is described. These data were obtained to develop validated fundamental fiber spinning models. These validated fiber spinning models will be used to guide fiber spinning for rapid product development.

Biopharmaceutical Manufacturing – an Unseen Plastics Market
Robert L. Wells, May 2007

Plastics engineers are very aware of the use of polymeric materials in the medical field but little is known about a technically interesting and rapidly growing application that is totally dependent on polymers, biopharmaceutical manufacturing. Since 1990, producers have been replacing their traditional stainless steel tanks and pipes in both new construction and retrofit situations with sterile pre-engineered single use plastic bags equipped with the necessary inlet and outlet ports, tubing, filters, valves, and manifolds.

Resolving Stress Cracks by Injection Molding Simulation and Birefringence Analysis
Shijun Ni, May 2007

CAE injection molding simulation software combined with birefringence analysis was used for resolving stress cracks and non-uniform stress distribution on an injection molded part. The part with a two-pin gate runner system was molded and cracked after molding. The birefringence showed high stresses on the part, which was in good agreement with part cracks. Based on the recommendation of the injection molding simulation, the part cracks were resolved by optimized gate location and runner system design. The birefringence shows low stresses on the final injection molded part.

Rotational Molding of Low Viscosity Metallocene PP Resins
E. Soos Takacs, S.M.Tanu Halim, J. Vlachopoulos, R.T. Fell, H.G. Diem, May 2007

Rotational molding is virtually a shear and pressure free process. The number of materials suitable for rotational molding is limited. This paper gives a summary of a fundamental study on newly developed low viscosity metallocene catalyzed PP resin for rotational molding applications. The influence of viscosity, surface tension and thermal properties on the sintering behavior of the polymers was investigated. Rotational molding experiments were carried out and mechanical properties of the molded parts were characterized.

The Effect of Density Profile on the Flexural Modulus of Polymer Foams
Denis Rodrigue, May 2007

It is known that bulk or average density is the major parameter controlling the mechanical properties of polymer foams. Nevertheless, density profile has also a major impact especially for structural foams where an unfoamed skin is enclosing a foamed core. In this study, the effect of density profile on the flexural modulus of a structural foam is discussed in terms of skin thickness and taking into account the local variation of density (related to void fraction) with position.

Balancing of a Profile Die for Glass Run Seal of a Car Using Three-Dimensional Flow Simulation
F. Zacarias, S. Schrader, M. Gupta, May 2007

Experimental data and three-dimensional finite element simulations of the flow in two different profile dies for glass run seal of a car are presented. The flow in one of the two dies, a plate die, is found to be highly unbalanced. Using a feeder plate in the second die (a stepped die configuration) the flow at the exit of the die was properly balanced.

Development of New PC/ABS Products for Chrome Plating Applications
Naveen Agarwal, Andre Volkers, May 2007

There continues to be a strong demand for chrome-plated plastic parts in exterior and interior automotive components. In this paper, we present two new PC/ABS products suitable for use in these applications. A high-heat product is designed to meet the growing need for improved heat stability, impact and flow in addition to good plate adhesion. A medium-heat product is designed for improved flow, impact and excellent plate adhesion. Effects of key material variables on processing and plating performance are examined.

Gap Bridging in Laser Transmission Welding of PA6
M. Chen, G. Zak, P.J. Bates, B. Baylis, May 2007

Gaps in weld seams are an obstacle for applying the contour welding strategy in laser transmission welding of polymers. This paper examines the effect of laser (power) and material (carbon black level) and geometric (gap thickness) parameters on the shear strength of PA6 lap welds. Assemblies were made using a continuous wave diode laser in a contour welding mode.

  Welcome Page

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net