The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.
Important Update: SPE's Technical Library Is Evolving The SPE Technical Library will be retired on September 15, 2025, as we transition to Polymer Insights—a powerful, AI-driven platform designed to transform how plastics professionals access and apply technical knowledge. Polymer Insights delivers answers and insights to your questions that are sourced entirely from SPE-curated content, including decades of peer-reviewed research, technical papers, and industry expertise. This new tool goes beyond search—providing intelligent, contextual results tailored specifically to you.
Open Access Preview: July 17–20, 2025
Be among the first to explore! From Thursday, July 17 through Sunday, July 20, Polymer Insights is open to all — no login required. Try it at www.polymerinsights.ai.
After July 20: Premium Members Only!
Don’t let this level of access end with the free trial!Starting on Monday, July 21, Polymer Insights will be exclusive to SPE Premium Members. Join SPE as a Premium member to keep unlimited access to this revolutionary tool!
Petri A. Fabrin, Maija E. Hoikkanen, Jyrki E. Vuorinen, May 2007
Aluminum and thermoplastic elastomer (TPE) hybrids are prepared by insert injection molding. No pre-heating or macroscopical mechanical bonding are needed. The key step is an appropriate etching of the aluminum surface giving a porous surface for melt penetration. In this work, the effect of injection molding parameters on bond strength is studied using Taguchi optimization. Mechanical strength is determined by peel test. Also, the effect of insert/TPE thickness ratio is studied.
Pulse cooling is a method where mold temperatures are monitored, and cold water is introduced to control the steel temperature. A variation of this technique delivers water immediately after mold closing for variable pulse times. Using this approach, better distribution of surface temperature on injection molded parts may be achieved compared to traditional cooling with a thermolator. Thermocouples and a thermal camera were used to evaluate mold and part surface temperatures respectively.
A process study of vacuum metallizer was performed and the results in terms of optical density uniformity, metal adhesion and barrier uniformity were studied. Gas barrier was found to be a complex function of the process parameters studied while adhesion was determined to be sensitive to testing materials as well as process parameters. Visual uniformity was found to depend primarily on metallization pressure.
This paper investigates the foaming behavior of wood fiber/HDPE composites with small amounts of nano-clay. The nano-clay dispersion was characterized by XRD and TEM. An extrusion foaming experiment blown with N2 was conducted. The cell nucleation and growth of composite foams were studied with varying processing parameters, such as temperature, pressure and clay content. The effect of nano-clay on the final cell morphologies and foam density of wood fiber/clay/HDPE nanocomposite foams were identified.
Using dynamic mechanical analyzers the relaxation behavior of a loosely cross-linked model epoxy resin was investigated before and after room temperature aging. Preliminary results indicate a stiffening of the storage moduli occurs below –50 °C, the ? relaxation temperature of the epoxy network, with a subsequent softening of the network above room temperature and a drop in the apparent glass transition temperature (Tg ). of the material with aging.
Xinghua Zhang, Zhenjin Zhu, Chul B. Park, E.K. Lee, Nan Chen, H.E. Naguib, May 2007
This paper studied the sorption/desorption of n-pentane in polystyrene and polypropylene using the sheet samples. The solubility of n-pentane in PS and PP was measured. And the concentration-dependent diffusivity of n-pentane in PS and PP was computationally modeled. Results exhibit that the simulated profiles match well with the experimental data while the penetrant concentration is above 30%.
Active packaging is widely used in the food and beverage industry to help ensure optimum food preservation. Currently, there are differing theories on the effects of active packaging additives on stressed induced plastic parts. This paper presents the results of a study that tests the chemical resistance of several different plastics under differing levels of stress when made with active packaging additives.
The effects of shear induced flow variation on the filling patterns of injection molds has been well documented in the recent past. Further understanding of their effects will allow engineers to use these effects to their advantage as opposed to attempting to eliminate their impact. This paper studies how shear induced flow variation is effected by thickness for several materials in a single cavity mold. The results and theories contained herein can be a valuable tool to both a design engineer laying out a new mold and a processing engineer producing parts using an existing mold.
Understanding the thermophysical and thermodynamic properties of polymer/gas mixtures is critical for controlling cellular morphology. This paper describes measurements of pure polypropylene (PP) density and PP/CO2 volume swelling at elevated temperatures and pressures using a newly developed method. Also, measured volume swelling is compared with the swelling calculated from SL and SS EOS.
Ghodratollah Hashemi-Motlagh, Andrew N. Hrymak, Michael R. Thompson, May 2007
This paper investigates the impact of foaming on the electrical conductivity and fiber orientation of a carbon filled cyclic olefin copolymer in injection molding. Results show that foaming can lead to significant improvement of electrical conductivity in the out-of-plane direction. Due to the preferred in-plane fiber orientation during mold filling, the growth of a bubble adjacent to a carbon fiber would re-orient the fiber in the out-of-plane direction.
Two methods to predict the pressure drop threshold (?Pthreshold) to initiate bubble nucleation in polymer foaming processes are developed. One method uses the modified nucleation theory developed in our previous work, while the other utilizes computer simulations to model the growth profiles of the first observable bubbles in batch foaming experiments. Both approaches have shown good agreement in their ?Pthreshold predictions. Moreover, the effects of pressure drop rate, gas content, and temperature on ?Pthreshold are demonstrated.
Gabriel Ventura, Ranganath Shastri, Miguel Ángel Vega, May 2007
It is possible to demonstrate that QFD (Quality Function Deployment) within a norm space permits to realize gap analysis and investment plans for a complex plastics production plant, using its process capability in the last Quality house.For the use of the same metric: DPMO, it is possible to compare man power, materials, maintenance, machinery, environment and methods. In these terms it is feasible to benchmarking the investment plans.
Gabriel Ventura, Ranganath Shastri, Miguel Ángel Vega, May 2007
There are many engineering situations where it is not necessary to analyze the whole domain of a physical model.In such instances, we demonstrate that it is possible to obtain an equivalent bilinear form using Lax-Milgram theorem with an orthogonal form applied to electrical appliance and turbomachinery, with a transfer matrix and variation principles.This transfer matrix solves a problem in shorter time than the Traditional DOE-FEA (design of Experiments) (Finite Element Analysis) Methods.
In this paper we will examine various aspects of weatherability for several significant polymers. Light stabilization and polymer degradation mechanisms will be compared as well as strategies for imparting weatherability for these materials. Several UV aging studies will be included to illustrate stabilization techniques, and some comparative studies highlighting accelerated weathering vs. outdoor weathering will be discussed.
A new approach is introduced to fabricate nozzle plates in this study. The micro mold was made by integration of LIGA and M-EDM technology to improve the accuracy. Micro injection molding was applied to produce the nozzle plates. There are sixty micro through-holes on each plate. The diameters of molded nozzle plates were 102±1 micro meters. The proposed manufacture procedures are believed to be more accurate and economical.
We examined a low cost technology for perpendicular magnetic patterned media that uses a metallic nanostamper and injection molding process. In this paper, we focused on the analysis of injection molding with passive heating, where the replication of 50 nm nanopillar arrays was successful. The effect of the thermal insulation layer on the replication quality was examined by analytical and experimental methods. Finally, the properties of magnetic layer deposited on the injection molded nanopillar array were analyzed.
Sulfonated polystyrene ionomers (alkali metal salts) with molecular weight below the entanglement molecular weight of polystyrene were prepared. The rheological behavior of the ionomers was characterized by dynamic and steady-state shear experiments. In general, the viscosity of the ionomers increased with sulfonation level and as the size of the cation decreased. Whereas, the starting polystyrenes were Newtonian fluids, the ionomers were non-Newtonian and viscoelastic.
A range of polyurethanes (PU) based on methylene diphenyl diisocyanate and polyether polyols varying in molecular mass, backbone structure and functionality are studied. Examination of the kinetic parameters of the PU reactions shows that the curing behavior and the hardness of such complex PU systems do not follow simple mixing rules. Scaling relationships to describe these complex dependencies and basic guidelines for formulation and processing are developed. Limitations of using the OHindex to predict the polyol reactivity are also discussed.
The flow patterns and injection pressures predicted using injection molding simulation software and actual flow patterns and injection pressures of the molded parts using a short study were compared and quantified. A method of validation was developed to compare the simulation results with actual molded parts and indicated that by using the correct combination of mesh type and certain process settings in the simulation software, an accurate prediction can be achieved with the simulation.
Flexural creep behavior of nylon 6/6 based long fiber thermoplastics (LFT) was determined using transient and dynamic testing methods. While the effect of increasing fiber volume fraction reduced creep, there was only a negligible effect of flow orientation effect. The creep data generated by dynamic mechanical analysis (DMA) tests was consistent with the transient tests.
Kim McLoughlin Senior Research Engineer, Global Materials Science Braskem
A Resin Supplier’s Perspective on Partnerships for the Circular Economy
About the Speaker
Kim drives technology programs at Braskem to develop advanced polyolefins with improved recyclability and sustainability. As Principal Investigator on a REMADE-funded collaboration, Kim leads a diverse industry-academic team that is developing a process to recycle elastomers as secondary feedstock. Kim has a PhD in Chemical Engineering from Cornell. She is an inventor on more than 25 patents and applications for novel polyolefin technologies. Kim is on the Board of Directors of SPE’s Thermoplastic Materials & Foams Division, where she has served as Education Chair and Councilor.
A Resin Supplier’s Perspective on Partnerships for the Circular Economy
About the Speaker
Gamini has a BS and PhD from Purdue University in Materials Engineering and Sustainability. He joined Penn State as a Post Doctorate Scholar in 2020 prior to his professorship appointment. He works closely with PA plastics manufacturers to implement sustainability programs in their plants.
A Resin Supplier’s Perspective on Partnerships for the Circular Economy
About the Speaker
Tom Giovannetti holds a Degree in Mechanical Engineering from The University of Tulsa and for the last 26 years has worked for Chevron Phillips Chemical Company. Tom started his plastics career by designing various injection molded products for the chemical industry including explosion proof plugs and receptacles, panel boards and detonation arrestors for 24 inch pipelines. Tom also holds a patent for design of a polyphenylene sulfide sleeve in a nylon coolant cross-over of an air intake manifold and is a Certified Plastic Technologist through the Society of Plastic Engineers. Tom serves on the Oklahoma Section Board as Councilor, is also the past president of the local Oklahoma SPE Section, and as well serves on the SPE Injection Molding Division board.
Joseph Lawrence, Ph.D. Senior Director and Research Professor University of Toledo
A Resin Supplier’s Perspective on Partnerships for the Circular Economy
About the Speaker
Dr. Joseph Lawrence is a Research Professor and Senior Director of the Polymer Institute and the Center for Materials and Sensor Characterization at the University of Toledo. He is a Chemical Engineer by training and after working in the process industry, he has been engaged in polymers and composites research for 18+ years. In the Polymer Institute he leads research on renewably sourced polymers, plastics recycling, and additive manufacturing. He is also the lead investigator of the Polyesters and Barrier Materials Research Consortium funded by industry. Dr. Lawrence has advised 20 graduate students, mentored 8 staff scientists and several undergraduate students. He is a peer reviewer in several journals, has authored 30+ peer-reviewed publications and serves on the board of the Injection Molding Division of SPE.
Matt Hammernik Northeast Account Manager Hasco America
A Resin Supplier’s Perspective on Partnerships for the Circular Economy
About the Speaker
Matt Hammernik serves as Hasco America’s Northeast Area Account Manager covering the states Michigan, Ohio, Indiana, and Kentucky. He started with Hasco America at the beginning of March 2022. Matt started in the Injection Mold Industry roughly 10 years ago as an estimator quoting injection mold base steel, components and machining. He advanced into outside sales and has been serving molders, mold builders and mold makers for about 7 years.
84 countries and 85.6k+ stakeholders strong, SPE
unites
plastics professionals worldwide – helping them succeed and strengthening their skills
through
networking, events, training, and knowledge sharing.
No matter where you work in the plastics industry
value
chain-whether you're a scientist, engineer, technical personnel or a senior executive-nor
what your
background is, education, gender, culture or age-we are here to serve you.
Our members needs are our passion. We work hard so
that we
can ensure that everyone has the tools necessary to meet her or his personal & professional
goals.
Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:
Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers, ISBN: 123-0-1234567-8-9, pp. 000-000.
Available: www.4spe.org.
Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.