SPE Library


The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 


Search SPE Library
    
    




Sort By:  Date Added   Publication Date   Title   Author

Conference Proceedings

The Use of Sub-Micron Particle Size Calcium Carbonate Filler and Ester Modified Processing Lubricant Systems to Add Value or Performance to Rigid PVC Formulations
Robert A. Lindner, May 2004

Formulators are constantly being asked to lower cost, improve performance, or both. This paper addresses this problem by reporting on the evaluation of an old standard calcium stearate paraffin lube system and one micron filler, vs. sub-micron fillers with ester modified lube systems.In the past this approach has been successful in allowing the use of lower modifier levels, or higher filler levels, without loss of properties, with modifier levels lowered from 4.5 to 3.0phr. This paper answers the question, “Is there any merit to using this approach when the modifier ranges from 2 to 0phr?” with the goal of eliminating the modifier altogether.

Reactive Blends of Poly (Vinyl Chloride) and Thermoplastic Polyurethane
Johanna Baena, Shane Parnell, K. Min, M. Cakmak, May 2004

In this study, a novel reactive blending technique was used to produce poly (vinyl chloride) (PVC)/thermoplastic polyurethane (TPU) blends that are otherwise difficult to produce by a conventional melt blending techniques due to degradation at elevated processing temperatures. Morphological and spectral characterization studies revealed that reactive blending process generated better mixing relative to melt blending process. The miscibility of the PVC with the polyols of the TPU and with the TPU was studied by changing in the chemical structure of the polyol.

Strength, Toughness, Lifetime and Reliability of Plastics in Engineering Applications
A. Chudnovsky, May 2004

Major factors affecting short term and longterm performance of plastics in engineering applications include a) chemical makeup and molecular architecture, additives etc; b) material and parts manufacturing conditions; c) installation and service conditions that include load, loading rate, temperature and other environmental conditions. Successful design of plastic components for intended application requires an understanding of the role of the above factors together with economic considerations that account for a cost of fabrication as well as for a price of failure. Material characterization and ranking with respect to strength, toughness and durability provide a basis for rational design with plastics. There are industrial standards and regulations develop to assist in product selection. Advantages and limitations of widely publicized standards and methods for durability and lifetime of engineering thermoplastics will be illustrated by examples of field failure analysis. Methodology of material durability and structural reliability assessment will be discussed.

Aspects of Yield and Fracture of Polymers and Their Nanocomposites
Alan J. Lesser, May 2004

The physical and mechanical behavior of nano-scale reinforced polymers is currently receiving a significant amount of interest in the scientific arena. One of the more controversial aspects discussed is associated with the role the interface has on the physical state and bulk properties of the resulting composite. Another aspect is that associated with length scale effects necessary for energy dissipation in polymer matrix composites and the role of nanocomposites in this arena. These issues are discussed in contrast to reinforcements evaluated over a range of length scales ranging between micron and molecular length scases.

Applicability and Limitations of Fracture Mechanics Concepts for Lifetime Prediction of Polyethylene Pipes
R.W. Lang, W. Balika, G. Pinter, Z. Major, May 2004

The traditional method to compare different types and grades of plastics as to their performance potential for pressurised plastics pipes consists of stress rupture experiments with pipes under constant internal pressure. Based upon the observation that long-term pipe failure generally is governed by a two stage process consisting of a crack initiation stage and a period of stable, slow crack growth (SCG), various methods of fracture mechanics have been applied in the last two decades to study and characterise the SCG resistance of PE pipe grade materials.The paper will provide an overview of the various approaches including concepts of linear elastic fracture mechanics (LEFM) and elastic-plastic fracture mechanics (EPFM), with a particular focus on their applicability and limitations in terms of lifetime prediction, on the one hand, and their potential for quick material comparisons and material rankings, on the other. From an experimental point of view the characterisation methods include monotonic fracture tests over a wide loading rate range, creep crack growth and fatigue crack growth tests, and full notch creep tests (FNCT) with square and round bar specimens in air and liquid surfactant environments.

Effect of Process Zone on Tear Resistance of Polymeric Films
S. Wu, K. Sehanobish, May 2004

Tear resistance is a critical requirement for polymeric film for applications such as packaging and imaging. Tear resistance is measured using the Elmendorf tear, trouser tear, and single edge notch tests. It was observed that in many cases the increase of tear resistance was results of crack curving. The mechanism of crack curving and the effect of process zone on crack curving are investigated in this paper. Crack curving during tear process is attributed to the process zone geometry, material orientation or damage orientation inside the process zone, and the large stretching or crack bluntness that create a mix mode fracture process. The effect of film orientation on process zone formation, crack curving, and the tear resistance is also investigated.

Accelerated Test for Stress Corrosion Crack Initiation in PB Tubing
Xiqun Niu, Wen Zhou, May 2004

The Stress Corrosion Cracking (also called Environmental Stress Cracking) process in Polybutylene (PB) tubing consists of three stages: 1) Crack initiation, 2) Slow crack growth, and 3) Dynamic crack propagation. The first two stages primarily determine the useful lifetime of PB tubing, since the third stage occurs in a relatively short time interval. In this paper, an examination of PB field failures, observation of crack initiation mechanisms, and evidences of chemical degradation as a primary cause of failure are presented. To evaluate crack initiation time in mechno-chemical conditions, a modification of ASTM standard environmental stress cracking technique is employed to accelerate the crack initiation process in PB and a simple extrapolation technique is proposed to estimate the time of crack initiation in service conditions.

Creep of Polyphthalamide (PPA) under Compression and Temperature
Ron Li, May 2004

Polyphthalamide (PPA) with fiber reinforcement is widely used in electronics as connector housing materials. In high temperature applications, the material undergoes creep. Creep deformation is further amplified when the material is under mechanical loading. This paper addresses PPA creep under temperature and compression loading. A modified time hardening model is shown to fit the experimental data very well. All parameters for the modified time hardening model are provided in the paper. Creep strain as a function of temperature, stress and time is discussed in details. Finite element model is presented to analyze creep strain for application conditions. For a screw tightening mechanism where PPA is under compression, clamping retention is analyzed as a result of material creep. Final discussions also include interactions between creep and pressure relaxation caused by creep, and its effect on clamping retention.

Assessment of Polycarbonate Toughness by Creep Test
Wen Zhou, Alexander Chudnovsky, Clive P. Bosnyak, Kalyan Sehanobish, May 2004

The problems associated with fracture toughness as a material parameter is addressed through studies of the crack and associated process zone developed under creep loading with polycarbonate. Fracture toughness, G1C, increased 40% with a 5% decrease in creep load, which shows it is not a material parameter. The time interval from steady crack growth to ultimate failure is even more sensitive to the creep stresses. It was found that a gradient of shear band density exists within the process zone which plays a strong role in the above measures of fracture toughness and lifetime. This finding is incorporated into a model for crack and process zone interaction, the crack-layer model.

Application of Acoustic Emission Technique for the Quality Control of Epoxy Coatings on Steel Substrate
H. Wu, H. Chen, H. Pham, N. Jivraj, M. Franca, May 2004

The quality of epoxy coatings on steel substrate mainly depends on their cohesion and adhesion properties. In this study the application of acoustic emission (AE) technique in coating quality control was investigated for two coating formulations and three substrates with different surface treatments. Research results showed that AE method can effectively differentiate epoxy coatings based on their cohesion and adhesion properties. All available AE parameters were ranked according to their effectiveness in discriminating coating formulation and substrate surface treatment.

Micro-Deformation and Failure in Polymeric Materials as Studied by In-Situ Tensile Test in a Transmission Electron Microscope (Tem)
Houxiang (Sean) Tang, Robert Cieslinski, Nikhil E. Verghese, Noorallah Jivraj, May 2004

This report describes a method for the study of micro-deformation mechanisms of polymeric materials using tensile straining stages in transmission electron microscopy (TEM). The straining stages allow the in-situ observation of morphological changes while tensile strain is applied to a material over a temperature range - 165 °C up to 500 °C. The application of this technique to different polymeric materials will be described. Micro-deformation mechanisms observed in the in-situ deformation study will be correlated to macroscopic mechanical test results. Implication for materials designing and failure mechanisms will be discussed.

Applicability and Limitations of the FNCT-Methodology to Predict the Long Term Failure Behavior of Polyethylene-Pipe Materials
Markus Haager, Gerald Pinter, Reinhold W. Lang, May 2004

The Full Notch Creep Test (FNCT) is widely used to characterize slow crack growth (SCG) in polyethylene (PE) pipe materials, especially in Europe. The test is currently standardized in ISO 16770.3 and EN 12814-3 in order to establish uniform test conditions enabling the use of FNCT for material specifications. Some important questions concerning the test conditions (e.g. surface-active solution, notching procedure, etc.) remain to be answered. In the research project presented here, a detailed study of the influence of various test parameters was carried out. The applicability and limitations of the methodology are discussed.

A Fatigue Approach for Lifetime Prediction of PE-HD Pipe Grades
Werner Balika, Gerald Pinter, Byoung-Ho Choi, Reinhold W. Lang, May 2004

Fatigue crack growth (FCG) experiments were conducted on two high density polyethylene (PE-HD) pipe grades with various test specimen configurations such as compact type (CT) and circumferentially notched bars (CNB). The effects of R-ratio and frequency on the FCG behavior were studied. While FCG rates showed a great dependence on R-ratio in terms of stress intensity factor range, the effects of frequency may be considered significant in the low crack growth region. These experimental data were employed for lifetime prediction based on the crack layer theory.

Annealing Effects on the Yield and Fracture of Bisphenol-A and 4,4'-Dihydroxydiphenyl Copolycarbonates
Donna T. Wrublewski, Alan J. Lesser, May 2004

The annealing effects on yield and fracture behavior of two different polycarbonates, one bisphenol-A-based (BPA) and one copolycarbonate of BPA and 4,4’- dihydroxydiphenyl (DOD), have been investigated. Annealing increases the yield stress, decreases the tan ? intensity at 80°C, and decreases the resistance to crack growth in both materials. The DOD material shows a slightly increased resistance to annealing compared to the conventional polycarbonate based on relative post-yield stress drops and tearing moduli of the materials.

Assessment of Plastic Failure of Polymers Due to Surface Scratches
G.T. Lim, H.-J. Sue, J.N. Reddy, May 2004

This paper is concerned with the evaluation of plastic damage of polymeric substrate under surface scratch deformation. Employing a commercial finite element (FE) package ABAQUS®, FE analysis was performed to study the permanent damage imposed by a spherical indenter as it traverses across the surface of a polypropylene (PP) substrate. As compared to the experimental data, the numerical results make reasonably accurate prediction on the onset of scratch damage. Also, the furnished solutions aid in elucidating the fracture phenomenon encountered and the possible damage initiation during scratch.

Mechanical Properties and Behavior of Polymeric Materials Simulated by Molecular Dynamics
Witold Brostow, António M. Cunha, Ricardo Simões, Júlio C. Viana, May 2004

We have used computer simulations to investigate the behavior of polymeric materials under a uniaxial tensile force. The simulations allow us to follow the behavior of individual macromolecular chains at the molecular level during deformation and thus study the deformation mechanisms developing up to fracture under different loading conditions.The influence of micro-structural features on the mechanical properties has also been investigated. For this we simulate materials with varying skin-core ratio and orientation of the chains. Although we use simplified models for the structure of the skin and core regions, the behavior of the simulated materials is akin to that observed in real materials.From the simulations we have gained a better understanding of the structure-properties relationships in polymeric materials. This knowledge can be used to create materials with improved properties.

Thermal and Hydrolic Stability of DOW's PULSE*2000EZ High Flow Polycarbonate/Acrylonitrile-Butadiene-Styrene Blend
Blair S. Patty, Joe Ceraso, Leo Novak, Hoang T. Pham, May 2004

Engineering thermoplastics are important materials for use in vehicle interiors where energy management requirements are critical. PULSE*2000EZ, a polycarbonate/acrylonitrile-butadiene-styrene (PC/ABS) blend from The Dow Chemical Company, was introduced and discussed at ANTEC 2000 as a new high flow PC/ABS blend capable of lowering injection molding cycle times without compromising the physical and thermal characteristics of the material. An additional benefit and feature with this material is its ability to maintain its properties as indicated by accelerated thermal and humidity aging. This paper will discuss the retention of the key material properties after aging the material at 90°C (194F) and 95% relative humidity up to one thousand hours and compare it to other pre-high flow PC/ABS products from Dow.

Failure Analysis of an Acrylic Automotive Part
Mary K Kosarzycki, May 2004

Cosmetic integrity is an extremely important property for automotive interior applications. Field returns or customer complaints are considered unacceptable from a supplier’s standpoint. The occurrence of one such failure in a painted acrylic part, prompted an investigation into the nature and potential origin of the observed cracking. The cracking occurred in a key slot location, resulting in delamination and ultimate loss of surface material. It was the conclusion of the analysis that several factors had played a role in the failure, including part design, residual stress, pre-existing flaws and chemical exposure. This paper will summarize the testing involved in determining the failure mode of the part as well as the potential source of the failure and proposed resolution of the situation.

Electrochemical Degradation of a Cooling System Component
Niles G. Stenmark, May 2004

Cracking and subsequent leakage occurred within a high power rectifier cooling system component. The leakage was observed after four years of rectifier service. The cracking was found at the bend of an elbow connector that joined two hoses. The investigation focused on the determination of the nature and cause of the failure. The results obtained during the evaluation indicated that the cracking was due to electrochemical polymer attack, which occurred as a consequence of an electrical potential present in the cooling system. This paper will focus on the testing used to characterize the failure mode and identify the cause of the cracking, thereby illustrating the failure analysis process.

Fractographic Characterization of Polycarbonate Failure Modes
Jeffrey A. Jansen, May 2004

Polycarbonate is an important plastic molding resin used to fabricate many engineered components. Because of its widespread usage, many different types of failures can result from various service conditions. Evaluating these failures through a systematic analysis program allows an assessment of how and why the parts failed. An essential portion of the failure analysis process is the fractographic examination, which provides information about the crack origin location, and the crack initiation and extension modes. The focus of this investigation was to characterize the surfaces of intentionally cracked laboratory samples in order to gain a more thorough understanding of polycarbonate fracture mechanisms. This paper will document some of the key fracture features associated with various polycarbonate failure modes.







SPE-Inspiring Plastics Professionals

© 2024 SPE-Inspiring Plastics Professionals.
All rights reserved.

84 countries and 60k+ stakeholders strong, SPE unites plastics professionals worldwide – helping them succeed and strengthening their skills through networking, events, training, and knowledge sharing.

No matter where you work in the plastics industry value chain-whether you're a scientist, engineer, technical personnel or a senior executive-nor what your background is, education, gender, culture or age-we are here to serve you.

Our members needs are our passion. We work hard so that we can ensure that everyone has the tools necessary to meet her or his personal & professional goals.

Contact Us | Sitemap | Data Privacy & Terms of Use

Links

Locations

SPE US Office
83 Wooster Heights Road, Suite 125
Danbury, CT 06810
P +1 203.740.5400

SPE Australia/New Zealand
More Information

SPE Europe
Serskampsteenweg 135A
9230 Wetteren, Belgium
P +32 498 85 07 32

SPE India
More Information

SPE Middle East
More Information

3Dnatives Europe
157 Boulevard Macdonald
75017, Paris, France
More Information

Powered By SPE

SPE-Inspiring Plastics Professionals

SPE-Inspiring Plastics Professionals

SPE ImplementAM

SPE-Inspiring Plastics Professionals

SPE-Inspiring Plastics Professionals

SPE-Inspiring Plastics Professionals




spe2018logov4.png
  Welcome Page

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net