SPE Library

The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 

Search SPE Library
Keyword/Author:
After Date: (mm/dd/yy)  
 
Sort By:   Date Added  ▼  |  Publication Date  ▼  |  Title  ▼  |  Author  ▼
= Members Only
Conference Proceedings
Modeling and Experimental Validation of the Stretch Blow Molding of PET
L. Martin, D. Stracovsky, D. Laroche, A. Bardetti, R. Ben-Yedder, R. DiRaddo, May 1999
In the two-stage stretch blow molding process for the manufacture of PET bottles, injection molded preforms are placed in an infrared oven, with axially profiled heating lamps. The subsequent inflation of the PET preform is strongly dependent on the preform geometry and the temperature profile, as hot zones will blow out faster and thin out more than colder and stiffer zones. In this work, the reheat and blowing stages of the process are both modeled and experimentally validated. The part considered is a water bottle produced at the Husky Bottle Development Center. The simulations were performed at the Industrial Materials Institute. Four oven operating settings are studied. The heat transfer in the oven is modeled by combining radiation and air convection. The preform stretching and inflation are modeled with a non-isothermal hyperelastic constitutive equation. Simulations are performed using experimentally measured temperature profiles as input.
Effect of Compounding Conditions on the Dispersion of Highly Filled CaCO3/PP Compounds in Twin-Screw Extruder
Marc Bories, Michel A. Huneault, Pierre G. Lafleur, May 1999
Highly filled CaCO3/PP blends (up to 60% wt) were compounded using an intermeshing corotating twin-screw extruder. The effects of screw configuration (4 geometries) and operating conditions such as RPM, total flowrate, filler feed position, temperature profile on the dispersion were investigated. A rapid and reliable method for evaluating the state of dispersion in the composites was developed. Falling weight impact and tensile tests were carried out. Composites' toughness and tensile properties (modulus, yield stress and strain), which are very sensitive to the dispersion, were correlated to the compounding conditions and to a dispersion index calculated by image analysis.
Crystallization Kinetics in Low Density Polyethylene Composites
Brian P. Grady, W.B. Genetti, May 1999
The effect of a high electrically and thermally conductive filler on the crystallization kinetics of low-density polyethylene (LDPE) crystallites has been quantified. An increase in crystal growth rate was found which was consistent with the increase in composite thermal conductivity. However, an anomalous jump, not present in the bulk thermal conductivity, coincided with the end of the critical region in electrical conductivity. The cause of this jump is not absolutely clear; however, we believe the shift is due to the formation of a continuous network of particles causing an increase in local heat dissipation.
A Novel Test to Predict the Effect of Additives and Processing Conditions on Polypropylene Fiber Screen Pack Life
Dennis L. Turnage, May 1999
A mechanical component that is especially important in the extrusion of polymers for fiber and film applications is the screen pack. During processing this screen pack filters out material that can reduce product quality and productivity. This paper focuses on a new test method that can indicate whether a given additive/formulation or processing temperature will tend to contribute to screen pack pluggage in polypropylene. Some of the factors to be presented will be the additive formulation, melt temperature, type of neutralizer, and resin type. Key criteria for this test initially was the ability to run in a laboratory setting using normal additive loading levels and to have excellent correlation to real world" processing; these have been met with this test. Numerous resin producers worldwide have validated the results of this test in normal everyday production."
Novel All-Thermoplastic Composite (TPC) Sandwich Systems for Rapid Molding
C. Mayer, A. Wöginger, M. Neitzel, J. Bauder, J v. Lindert, May 1999
Reinforced all-thermoplastic sandwich systems constitute a specific class of composites consisting of stiff faces and a thick and light core either porous or non-porous. They allow for a fast one-step and free of adhesive molding of continuously manufactured intermediates into complex parts (e.g. body panels, structural parts). Different all-thermoplastic sandwich systems were analyzed with respect to efficient processing techniques, manufacturing costs and mechanical performance. Furthermore, economical and technological benefits were exhibited and potential fields of application were derived. A significant potential for low-cost tooling was identified using self-expandable knitted cores whereas the application of a flowable core provided complex and stiff structures.
Characterisation of Polymers by Bubble Inflation
Jens H. Christensen, Henrik K. Rasmussen, Erik M. Kjær, Carsten L. Lauridsen, May 1999
In order to characterise materials using a simple and relative inexpensive method, the bubble inflation technique was modified. A polymer plate is clamped between a Teflon coated heating plate and a heated cylinder. By applying air through the heating plate the polymer membrane deforms into the cylinder. The top position of the membrane is monitored by fibreoptic sensors positioned in the cylinder. The pressure difference across the membrane is measured as well. The deformation in this inflation device is non-uniform and is only equal biaxial in the top of the deformed membrane. Due to this, the response is modelled using a finite element method in 3D Cartesian coordinates. The K-BKZ constitutive equation is used to model the non-linear properties of the material. Using linear viscoelastic properties from oscillatory shear measurements and measurements of the bubble inflation, estimation of the strain dependence in the constitutive equation is possible.
Automating Online Quality Control by the Use of New Neural Network Algorithms and Neuro-Fuzzy Systems
Oliver Schnerr-Häselbarth, Walter Michaeli, May 1999
Online quality control based upon empirical process models became a standard quality assurance tool for specific high complex and expensive parts produced in injection molding. The use of this control method is limited to special-educated engineers due to prerequisite knowledge in statistics and data analysis methods. At IKV algorithms based upon artificial intelligence have been developed to solve this problems and provide online quality control for each injection molded part without any specific education of the user. Well-known process knowledge modeled with Neuro-Fuzzy Algorithms reduces the design of experiments to a simple description of the molding. The new IKV Neural Network Algorithm enables a fully automated process modeling.
Closed Loop Fuzzy Control of Part Weight in Injection Molding of Liquid Silicone Rubber (LSR) Based on PVT-Behavior
E. Henze, E. Haberstroh, May 1999
The injection molding of Liquid Silicone Rubber (LSR) represents a cost-efficient process for the production of high quality elastomer moldings. Due to the extreme thermal conditions in the mold and the low material viscosity a precise undervolumetric filling of the cavity is required to avoid underfilling or flash formation. Since process disturbances lead to changes in the mass of material injected into the mold a closed loop control of the injected mass based on the pvT-behavior is developed and realized on an industrial injection molding machine. Dependent on the course of the cavity pressure and the mold temperature a fuzzy-based algorithm determines the required changes of the dosing volume in case of process disturbances.
Influence of mPE Grades on the Dynamic Properties of PP/mPE-Blends
Frank Raue, Gottfried W. Ehrenstein, May 1999
Blending polypropylene (PP) with an elastomeric phase such as EPDM is often performed in order to increase its fracture toughness. With the availability of metallocene polymerized Polyethylene (mPE), a new modifier with interesting mechanical properties can be chosen for blending with PP. This research investigates the influence of different grades of mPE in PP/mPE-blends on the blend's properties. Special emphasis is placed on the dynamic characteristic quantities. The load limits of the blend for applications in which dynamic stresses are predominant are determined by using the hysteresis measurement method.
Stress Relaxation Profiles of Molded and Extruded Thermoplastics Using Dynamic Mechanical Analysis
Pearl Lee-Sullivan, Donna Dykeman, May 1999
The stress relaxation profiles across the skin-core-skin layers of injection molded polycarbonate and extruded polyethylene sheet are presented. The profiles were obtained by progressively removing the layers followed by stress relaxation tests using a Dynamic Mechanical Analyzer (DMA). The machined layers were characterized using the elastic modulus, Eo, and the relaxation time, ?o. It was found that the DMA was able to distinguish the differences in viscoelastic response across the thickness of the polymer samples. The variation in behaviour was consistent with the expected morphology and molecular orientation developed due to the processing method.
Computer Aided Design of Preforms for Injection Stretch Blow Moulding
G.H. Menary, C.G. Armstrong, R.J. Crawford, May 1999
Simulations of the injection blow moulding process have been performed using the Abaqus finite element package. The simulations have been developed using three different material models (creep, hyperelastic and Buckley) and the thickness predictions have been compared against those obtained experimentally. The Buckley model was found to be the most efficient material model to model the blow moulding process. This model is now being used to investigate the design and development of preforms. A methodology has been developed to use the material distribution produced by the simulation to predict the shelf life of the container. A FORTRAN subroutine has been written which accesses the properties of each element of the model and from these properties the shelf life can be found.
Sub-Inclusion Morphologies in HDPE/PS/PMMA Ternary Blends
Joël Reignier, Basil D. Favis, May 1999
Various ternary HDPE, PS and PMMA blends were prepared in one step using a brabender mixer. The morphology in this case consists of a PE matrix, a PS dispersed phase and PMMA sub-inclusions within the dispersed PS, the so-called composite droplet morphology. SEM observation and quantitative characterization were used to show that this complex morphology occurs within the first minute of mixing and remains stable thereafter. Furthermore, it is demonstrated that the presence of sub-inclusions generates a measurable change in PS droplet size. It is shown quantitatively that all the PMMA is present in sub-inclusion form.
Evaluation of the Thermal Degradation of Polymer Matrix Composites via Ultrasonic Spectroscopy and Fracture Toughness
Gregory T. Schueneman, Alan J. Lesser, Terry Hobbs, Bruce M. Novak, May 1999
Polymer matrix composites (PMC) are commonly exposed to excessive thermal gradients during service. Thermal degradation may not create distinct defects, yet will degrade the matrix modifying its behavior significantly. We have developed an ultrasonic spectroscopy method to characterize the thermal degradation of PMC. Ultrasonic spectroscopy utilizes the frequency spectrum of transmitted or reflected sound to characterize materials. Carbon fiber - epoxy laminate composite were exposed to short term - high intensity and long-term - low intensity thermal gradients. Frequency spectra were collected before and after thermal exposure. Changes in the frequency spectrum correlated with observed changes in mode I fracture toughness.
Mechanical and Thermal Properties and Leacheate Analysis of Carpet Residue/Polyethylene Prototypes for Building and Construction Applications
U. Yilmazer, M. Xanthos, S.K. Dey, S. Mitra, C. Feng, May 1999
A complex carpet residue is obtained as a byproduct in the tertiary recycling of nylon-6 fibers from used carpets. It consists of mainly polypropylene, styrene-butadiene rubber and calcium carbonate, and is potentially a low cost, high volume waste stream with consistent properties. In this study, composites of carpet residue with polyethylene were evaluated for building and construction applications. As received carpet residue was first compounded with low density polyethylene, homogenized and devolatilized in a twin screw extruder. Later, blocks were prepared by the intrusion process and tested for their mechanical and thermal properties as well as the leaching characteristics of heavy metals and organic carbon. It was demonstrated that the prototypes of these blocks can be potential candidates for use in a novel thermal spacer application.
Rheological Modification of PET by Reactive Processing with Polyepoxides
M-W. Young, M. Xanthos, G.P. Karayannidis, D.N. Bikiaris, May 1999
In attempts to produce modified PET resins with improved rheology for applications requiring high viscosity and elasticity such as foaming or extrusion blow molding, a novel diimidodiepoxide of low MW was evaluated as chain extender/branching agent; its reactivity was compared with that of an ethylene/glycidyl methacrylate copolymer. Melt modified products were characterized by end-group analysis, intrinsic viscosity and for dynamic mechanical properties. It is shown that under certain conditions, reaction with less than 1 wt% diimidodiepoxide produced materials with rheological characteristics similar to those of extrusion foamable by gas injection PET grades.
Reactive Processing of Styrene-Maleic Anhydride and Epoxy Functionalized Polymer Blends
Goknur Bayram, Ut/cu Yilmazer, Marino Xanthos, May 1999
The reaction of styrene-maleic anhydride (SMA) with polyethylene/methyl acrylate/glycidyl methacrylate (E-MA-GMA) was studied in a batch mixer and in a corotatmg twin screw extruder. Also, the mixing of a nonreactive blend of SMA with polyethylene/methyl acrylate (E-MA), with similar rheological properties to E-MAGMA, was studied under the same processing conditions. The mixing products of reactive and nonreactive systems exhibited drastically different properties. Reactive blends showed higher tensile modulus, tensile strength, strain at break and complex viscosity in comparison to non-reactive blends. The reactive blends had also finer morphology than the non-reactive ones.
Surface Analysis of Poor Printability PVC Films
Joseph W. Burley, Bruce C. Beard, May 1999
Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and X-ray Photoelectron Spectroscopy (XPS) were employed to analyze the surfaces of PVC films with poor printability. FTIR indicated that, independent of formulation, the migrating species were metal carboxylates. Different techniques penetrate the surface to different depths allowing examination of a range of surface layers. XPS indicated that, in the worst case, the upper surface layer was comprised almost exclusively, of a mixed metal carboxylate. Atom percentages obtained by XPS indicate hydrolysis of the mixed metal carboxylate at the vinyl surface.
Parameters Affecting Extrusion Foaming of PET by Gas Injection
M. Xanthos, S.K. Dey, Q. Zhang, J. Quintans, May 1999
The rheological properties of conventional PET resins are not particularly suitable for low density extrusion foaming with physical blowing agents and as a result modified resins with higher melt viscosity and elasticity are often used. In this work parameters affecting the monolayer flat sheet extrusion of foams having variable densities (from about 1.2 to 0.2 g/cc) are presented. Unmodified and chemically modified resins with different melt viscoelastic properties are used. The effects of variables such as type and concentration of atmospheric gases, resin rheology and choice of process conditions are related to product characteristics including density, crystallinity and thermoformability.
New Thermoplastic Elastomers by Quasiliving Atom Transfer Free Radical Grafting
Tamás Fónagy, Béla Iván, Márta Szesztay, May 1999
Controlled synthesis of a new thermoplastic elastomer (TPE), poly(isobutylene-g-styrene) (PIB-g-PSt) was achieved by quasiliving atom transfer radical polymerization (ATRP). A new commercially available butyl rubber containing bromobenzyl moieties was used as macroinitiator for ATRP of styrene catalyzed by CuBr/2,2'-bipyridine complex. Both bulk and solution polymerization resulted in well-defined graft copolymers as indicated by analyses with 1H NMR and GPC. Phase separated morphology in these graft copolymers was found by DSC. Stress-strain analyses indicate high elongation and tensile strength for PIB-g-PSt grafts with certain composition. This new grafting process and the resulting TPE is candidate for several useful applications.
Thermal Stresses in Freely Quenched Slabs of Semicrystalline Polymers
X. Guo, A.I. Isayev, May 1999
Thermal residual stresses in freely quenched semi-crystalline polymer slabs were calculated based upon the modifications of the Indenbom theory for inorganic glasses and linear viscoelasticity. These modifications were introduced to include the influences of crystallization on the shear relaxation modulus of the polymer during free quenching. The non-isothermal crystallization kinetic model due to Nakamura et al. was employed to calculate the variations of crystallinity. In the case of the Indenbom theory, a polymer during crystallization due to quenching was assumed to undergo an abrupt transition from an ideal plastic state to an elastic state upon the completion of crystallization. In the case of linear viscoelasticity, the Morland-Lee constitutive equation was utilized with the effect of crystallization on the time-temperature dependent shear modulus taken into account. The Spencer-Gilmore equation of state was employed to model the specific volume changes during crystallization, and used to determine the local thermal loading that results in the thermal stresses. Based on the above theoretical work, numerical simulations of development of thermal stresses in the symmetrically-cooled slabs of isotactic polypropylenes (i-PP) under various cooling conditions were performed. The predicted thermal stresses in the slabs were then compared with the measurements.


This item is only available to members

Click here to log in

If you are not currently a member,
you can click here to fill out a member application.

We're sorry, but your current web site security status does not grant you access to the resource you are attempting to view.




spe2018logov4.png
  Welcome Page

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net