SPE Library

The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 

Search SPE Library

Sort By:  Date Added   Publication Date   Title   Author

Conference Proceedings

Injection Molding by Direct Compounding
Bernd Klotz, May 1999

Direct compounding has long since been eastablished in sheet-, profile- and pipe-extrusion, where the high cost-advantages of single-stage article production are appreciated [5]. Compared to extrusion applications, direct compounding of injection molded articles is comparitively unknown territory. The IMC-process (Injection Molding Compounding) enables filled or reinforced plastics to be direct-compounded immediately before injection molding. This offers two advantages to the molder: his material costs are reduced and he gains in flexibility.

Motors and Drives for Extrusion Applications
William A. Kramer, May 1999

There are many choices and options available for motors and drives for extruders and other machinery used in extrusion lines. This paper provides an in-depth explanation of DC, AC Vector, Servo, Brushless DC, and other common drive and motor technologies. It covers how they work, their major differences, their pros and cons, and some guidelines in how best to apply them. This knowledge should help plastics engineers in the selection of extrusion equipment.

Velocity Distributions in the Nip and Translational Regions of a Co-Rotating Twin-Screw Extruder
Serafim Bakalis, Mukund V. Karwe, May 1999

The positive displacement characteristics of a twin-screw extruder are often attributed to the intermesh of the two screws. Our objective was to measure velocity distributions in the nip and the translational regions of a co-rotating twin-screw extruder. The variation of axial and tangential velocity with screw rotation changed significantly from the translational to the nip region. Much higher axial velocity values were measured in the nip when compared with those measured in the translational region.

Effect of Thermal Degradation on the Impact Properties of PVC Compounds
F. Ryan Sullivan, Rabeh H. Elleithy, Amjad Abu-Ali, May 1999

Instrumented drop weight impact test was used to study the effect of thermal degradation on the impact properties of PVC compounds. The impact resistance of the aged compounds related well with their weight loss and hence thermal degradation. Each compound showed a specific weight loss percentage that correlates with a 50% loss in its impact properties (failure point) irrespective of the aging temperature. The results were also used to estimate a thermal index (TI) of each compound in a rapid and reliable way.

Immersion Study of Composite Poly(Propylene) on DMTA
John H. Suwardie, May 1999

Dynamic Mechanical Thermal Analyzer (DMTA) tests were conducted while samples were immersed in a chemical solution at various temperatures. Time Temperature Superposition (TTS) was used to create the MasterCurve of strain(t) and creep modulus over extended time. The effect of strain(t) before and after immersion was be studied.

New Polyolefin-Based Thermoplastic Vulcanizates
H.G. Fritz, May 1999

This paper describes the formulation and generation of novel types of thermoplastic vulcanizates based on PP/EP-and TPU/EVA-compositions. In both concepts the elastomeric phase is dynamically crosslinked and embedded in a microdisperse distribution in a continuous thermoplastic matrix. As a result of blend composition, preparation and morphology formation concepts, two-phase polymers with outstanding thermomechanical and physical properties were generated, highly appreciated in automotive, rubber and furniture industry.

Compounding of Long Glass Fiber Reinforced PP (DIF-LFT) on a Single-Screw Extruder
K.-P. Sigl, H.-G. Fritz, May 1999

This contribution introduces an economical process technology to generate long glass fiber reinforced polypropylene on a single-screw extruder. The technology can work both as a single-stage or as a two-stage process. The innovative material enlarges the use of fiber reinforced thermoplastics (LFT and GMT), for example large-scale productions in the automotive industry. Besides the plant development it is necessary to evolve a polymer formulation and its optimization. The mechanical profile of the new material DIF-LFT30 is presented and discussed.

Translating Failure into Success - Lessons Learned from Product Failure Analysis
John E. Moalli, May 1999

Analyses of hundreds of failed plastic products have revealed some interesting trends and recurrent themes. Designers and manufacturers can reduce failures by examining the lessons learned from product failure analysis. Case studies are presented with emphasis on operating environment and loads, working stresses, computer modeling, compatibility with metallic materials, end-use testing and performance tracking. A set of simple guidelines is discussed that, if considered early in the product cycle, may help in reducing product failures.

Dipolar Dynamics in Miscible Polymer Blends
Jo Wing Sy, Jovan Mijovic, May 1999

The reorientational dynamics of dipoles in PVDF/PMMA blends were investigated by dielectric relaxation spectroscopy (DRS). Various relaxation processes associated with different morphological regions were identified. Phase separation during crystallization was monitored in-situ by DRS. In addition to the relaxation related to the glass transition, a relaxation which cannot be attributed exclusively to the crystal-amorphous interphase is found in the blends. An interpretation of experimental observations is based on cooperativity and morphological considerations.

Trouble Shooting Cavity to Cavity Variations in Muticavity Injection Molds
John Beaumont, John Ralston, Adam Shuttleworth, May 1999

Significant differences are commonly seen between parts molded in multicavity injection molds. The elimination of these variations is complicated by the large number of variables existing within the mold, the injection molding process and the material. This paper presents a means of isolating and quantifying the primary causes of these variations. By isolating the causes the molder can more effectively and efficiently address the differences between parts molded in different cavities and thereby maximize productivity.

Flow Fields of Polymer Melt Flowing through Wedge Converging Channel
Han-Xiong Huang, May 1999

Simple formulae are proposed for the velocity and extensional strain rate profiles for a power-law fluid in a converging wedge channel. Trajectory images are obtained of a colored strand in the high density polyethylene melt flowing through a tapered slit die. The theoretically predicted trajectories are in reasonable agreement with the experimental results. The varying trends of the extensional strain rate with the radial and angular positions in the converging channel are then theoretically revealed.

Case Studies of Plastics Failure Related to Improper Formulation
Myer Ezrin, Gary Lavigne, May 1999

Troubleshooting of plastics failures often requires chemical analysis to determine if the formulation is a contributing factor. Examples of failures in product performance or development associated with incorrect or improper chemical composition of formulations include (1) adhesive problem due to improper order of films in a multilayer system; (2) hardener left out of an adhesive; (3) delamination of tin coating from copper due to adhesive tape wrap; (4) stiffening of grease lubricating a moveable screw in a servo motor; (5) unintentional color in a portion of an electrical cable.

Isomers and Isomerization Processes in Poly-Anilines
A.G. MacDiarmid, Y. Zhou, J. Feng, G.T. Furst, A.M. Shedlow, May 1999

The extraordinarily important potential role of isomers in determining the electronic, magnetic, optical, structural and mechanical properties of poly-anilines, including polyaniline is presented. Positional and cis/trans isomers and isomerism processes, some of which occur relatively slowly even at room temperature in solution are reported for the phenyl/phenyl end-capped dimer and the phenyl/amino end-capped tetramer (emeraldine oxidation states).

Kinetics of Non-Isothermal Crystallization of Syndiotactic Polypropylene: Avrami, Ozawa, and Kissinger Approaches
Pitt Supaphol, Joseph E. Spruiell, May 1999

The kinetics of non-isothermal crystallization of syndiotactic polypropylene was investigated using a differential scanning calorimeter (DSC). Analysis of the data was carried out using the well known Avrami and Ozawa equations. The activation energy for molecular transport based on non-isothermal melt crystallization was calculated using the Kissinger method.

Performance of Rubber-Modified Cyanate Ester Matrices
Brian S. Hayes, James C. Seferis, May 1999

Cyanate ester resins were modified with epoxy-terminated butadiene acrylonitrile rubber (ETBN) and impregnated into woven glass fabric. Mode I and mode II interlaminar fracture toughness of the cured laminates were evaluated as a function of rubber concentration. Mode I fracture toughness increased almost twice that of the unmodified system, while mode II fracture toughness remained essentially unchanged. Composite samples were subjected to aging experiments in water and the absorption behavior and thermal performance were characterized.

Plastic Part Design - Lessons Learned
Vikram Bhargava, May 1999

Five different parts and assemblies that seemed to have been designed well but failed to meet the functional requirements after production are analyzed for the reasons of the failure. These are compatibility of materials, long term stress cracking, and effect of tool design on the part properties. The theory behind the failures is discussed briefly. Finally the solution to alleviate these problems is discussed.

Metal-Polymer Interfaces in Polymer-Based Electronic Devices
M. Fahlman, A. Andersson, P. Bröms, Th. Kugler, M. Lögdlund, W.R. Salaneck, May 1999

A number of degradation mechanisms in polymer-based light emitting devices have been studied. It was found that interfacial chemistry occurs between indium tin oxide (ITO) and precursor poly(p-phenylene-vinylene) (PPV) forming InCl3, which enhances the rate of conversion to PPV but leaves the polymer slightly p-doped. Electron flux on/through PPV films damages mainly the vinyl linkage, probably causing scission with subsequent cross-linking or bond formation with oxygen species.

Thermoplastic Elastomers, Four Decades of Innovation
Sabet Abdou-Sabet, May 1999

The successful commercialization of Polyurethane TPEs and elastic fibers in the late fifties initiated the move toward the establishment of thermoplastic elastomers as a new class of polymers. In the same decade the styrene block polymers were introduced and the dynamic vulcanization process was discovered. In the second decade, the copolyesters made their entry into the engineering resin applications and in the third decade the thermoplastic vulcanizates kicked this new class of polymers into reality.

Interfacial Free Volume Measurements of Epoxy on Aluminum by PALS
M.M. Madani, R.R. Miron, R.D. Granata, May 1999

Positron annihilation lifetime spectroscopy(PALS) characterizes free volume in polymers. Numerical integral transform methods(CONTIN program) extract continuous distributions of free volume cavities. An intermediate lifetime was found in epoxy films on chrome conversion coated (CCC) Al substrates and attributed to positron annihilation at the interface. Analogous lifetimes were identified for epoxy polymer/SrCrO4 particles and epoxy films/CCC substrate specimens. Applications include studies of permeant interactions at polymer interfaces.

Novel Oil Resistant Thermoplastic Vulcanizates
Tonson Abraham, Sabet Abdou-Sabet, Norman Barber, May 1999

The hydrocarbon oil resistant thermoplastic elastomers that are at present commercially available are not suitable substitutes for oil resistant thermoset rubbers such as nitrile butadiene rubber (NBR). The properties of a thermoplastic vulcanizate produced by the dynamic vulcanization of NBR in a polyester thermoplastic are shown to be comparable to those of an equivalent hardness thermoset NBR.

  Welcome Page

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net