SPE Library

The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 

Search SPE Library
Keyword/Author:
After Date: (mm/dd/yy)  
 
Sort By:   Date Added  ▼  |  Publication Date  ▼  |  Title  ▼  |  Author  ▼
= Members Only
Conference Proceedings
IMPROVING INTERFACIAL ADHESION IN WOOD PLASTIC COMPOSITES
Christoph Burgstaller, Bastian Priller, Wolfgang Stadbauer, May 2011
The aim of this work was to improve the interfacial adhesion between the matrix and the wood particles in polypropylene based wood plastic composites with the addition of chemical agents at the wood particle surface. We found, that with the addition of rather small, linear molecules, e.g. e-Caprolactone, interfacial adhesion, and therefore tensile strength, was improved up to 10% additionally to the benefits of a common maleic anhydride based compatibilizer. Furthermore, we found that also the chemical composition of the molecules added at the surface shows an influence at the extent of the improvement.
EFFECT OF AGING ON MECHANICAL BEHAVIOR OF A BIODEGRADABLE POLY(LACTIDE-CAPROLACTONE) COPOLYMER
Jone Munoz, Jose-Ramon Sarasua, May 2011
Poly(L-lactide/æ-caprolactone) (PLCL) was physically aged at 36§C and 40% of relative humidity (RH) to study the evolution of its structure and mechanical properties with time. Samples with an initial amorphous PLCL matrix, obtained by fast quenching from the melt were characterized before and during aging. The changes in structure and mechanical properties were studied using differential scanning calorimetry (DSC), X-Ray diffraction (WAXS) and tensile tests. As a result of aging, PLLA crystals were formed within the multiblock copolymer prompting to an increase in stiffness and to a loss of its elastomer-thermoplastic behavior of PLCL.
EFFECT OF SOFT SEGMENT MOLECULAR WEIGHT ON THE MECHANICAL AND STRUCTURAL PROPERTIES OF SILICA FILLED POLYURETHANES
James Sloan, May 2011
In this work, we consider the effect of the addition of functionalized silica to a series of poly (tetramethylene oxide) (PTMO) based polyurethanes. We have synthesized urethanes with different molecular weight soft segments (PTMO) and evaluated both structural and mechanical properties. The mechanical data show a reinforcing effect occurs when the urethanes is filled. The FT-IR spectra show that the hard domain hydrogen bonding is unaffected by incorporation of silica. However, at elevated silica levels, the silica appears to attach onto the free carbonyls. These effects are dependent on the MW of the PTMO soft segments.
CONCURRENT AND CRYSTAL FORMATION DURING ISOTHERMAL CRYSTALLIZATIONS OF POLY (L-LACTIDE)
Jose-Ramon Sarasua, Erlantz Lizundia, Purificacion Landa, May 2011
The effects of temperature on crystallizations of Poly (L-lactide) (PLLA) have been studied by means of differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD) and atomic force microscopy (AFM). The quantification of both ñ and ñ crystal structures into the crystallized PLLA samples was determined for 90 ?§C < Tc < 150 §C. The shortest crystallization times were achieved at Tc =107.1 §C, where both ñ and ñ crystal develop in the same proportion. The crystal structure changes have also been observed by WAXD . AFM images show a crystallization temperature dependence of surface roughness, spherulite diameter and nucleation density.
FLAME RETARDANT PROPERTIES OF HIGH HEAT POLYCARBONATE RESINS
Gaurav Mediratta, Yaming Niu, Xiaoyu Sun, Srinivas Siripurapu, May 2011
Applications such as certain lighting components and face shields require clear materials that offer a combination of high heat resistance and low flammability. The flame performance of a new class of polycarbonates, ranging in Tg from 165?§C to 185?§C, was evaluated to understand their suitability for such applications. The new high heat polycarbonates showed superior flame performance in comparison to conventional and other high heat polycarbonates. Further, the flame performance was maintained in presence of pigments. The improvements in flame retardant properties did not adversely affect the use temperature with respect to color or molecular weight retention at elevated temperatures.
EFFECT OF CHAIN EXTENSION ON THE PROPERTIES OF PLA/TPS BLENDS AND FILM BLOWING PROCESSING
Hongbo Li, Michel Huneault, May 2011
The effect of a multifunctional epoxy-acrylic-styrene copolymer as chain extender (CE) on the properties of PLA/Thermoplastic Starch (PLA/TPS) blends was investigated and its effect on the processing of blown films was clarified. The PLA/TPS blends were prepared by twin-screw extrusion, which comprised 27%TPS in the PLA matrix and 36% sorbitol/glycerol mixtures as plasticizers in TPS. The viscosity of the blends was dramatically increased by adding a small amount of CE. This is of great interest for film-blowing since this process requires materials with high melt strength, which has been demonstrated by the successful lab-scale film blown trials.
BIAXIAL ORIENTATION AND PROPERTIES OF POLYLACTIDE/THERMOPLASTIC STARCH BLENDS
Nathalie Chapleau, Hongbo Li, Michel Huneault, May 2011
The biaxial stretchability of polylactide/thermoplastic starch blends was investigated. Blends were prepared via twin-screw extrusion. Water, glycerol and sorbitol were used as plasticizers. Interfacial modification was performed by grafting the PLA with maleic anhydride. A chain extender was also used. The addition of the grafted PLA yielded a finer TPS dispersed phase. These blends were drawn using a laboratory biaxial stretcher. The addition of TPS, grafted PLA and chain extender affected the biaxial stretchability of the neat PLA. Adding TPS to PLA resulted in a decrease of the tensile modulus but increased the elongation at break in some cases.
FABRICATION OF MICRO-DIES FOR EXTRUSION OF POLYMER MELTS
Sebastian Gepp, Thomas Ottnad, Franz Irlinger, Tim Luth, May 2011
The ongoing trend for miniaturization demands research in the field of micro-extrusion. This work compares two techniques for manufacturing micro-dies; mechanical manufacturing and laser ablation. A micro-die needs to fulfill requirements such as fast nozzle exchange and high accuracy. The nozzle channel needs to have a diameter of less than 0.5 mm, a high quality and high aspect ratio. The disadvantages and advantages of both techniques are discussed while experimental data supports the discussion. The results go well with the expected behavior based on the nozzle channels geometry. Laser ablation is the tool of choice when manufacturing micro-dies for extrusion.
SEAL LAYER MATERIALS CHARACTERIZATION IN TERMS OF CRYSTALLINITY AND RHEOLOGY
Zahra Najarzadeh, Abdellah Ajji, May 2011
A series of commercial seal layer grades ethylene vinyl acetate (EVA) resins were investigated in terms of thermal and rheological properties. The effect of vinyl acetate (VA) content in Differential scanning calorimetry (DSC) experiments revealed that the increase of VA content leads to decrease in melting point and heat of fusion. In oscillatory shear measurements the effect of long-chain branching on high shear sensitivity and long relaxation time of resins was revealed. In addition, a significant strain hardening behavior in extensional viscosity measurements was observed which indicated high melt strength of these resins.
CRITICAL ASSESSMENT OF SCRATCH VISIBILITY DETERMINATION METHODOLOGIES
Peng Liu, Robert Browning, Hung-Jue Sue, Scooter Jones, Thomas Traugott, May 2011
The major objective of this work is to critically assess the similarity and differences between the two industrial scratch visibility determination methodologies: Erichsen and ASTM/ISO scratch tests. The assessment relies on the two evaluation methodologies: L for Erichsen and contrast for ASTM/ISO. A good correlation between the two methods can only be established if a contrast criterion is also utilized for the Erichsen test. The surface deformation that gives rise to light scattering such as the scratch profile and the surface roughness on the scratch path were studied for both methods and their implication on scratch visibility will be discussed.
ACCELERATED ENVIRONMENTAL AGEING OF MATERIALS USED FOR COLLAPSIBLE FUEL STORAGE TANKS
James Sloan, David Flanagan, Paul Touchet, Henry Feuer, Daniel Desechepper, Charles Pergantis, May 2011
The purpose of this work was to perform a comparative analysis of various candidate nitrile coated fabric materials supplied by potential vendors to be used as fuel storage tanks and compare the results to the currently fielded polyurethane storage tanks. Our strategy is to utilize advanced environmental ageing methods to simulate extended weathering conditions. Our results demonstrate that the nitrile coated fabrics performed well in our evaluation. Their breaking strengths are about equal to the currently fielded urethanes and they performed comparably when subjected to environmental ageing conditions.
HIGH TEMPERATURE MECHANICAL PROPERTIES OF PEROXIDE CROSS-LINKED ETHYLENE-OCTENE COPOLYMER
Rajesh Theravalappil, Petr Svoboda, Sameepa Poongavalappil, May 2011
Ethylene-octene copolymer (EOC) was cross-linked by dicumyl peroxide (DCP). Thermoplastic vulcanizate (TPV) based on polypropylene (PP)/EOC-DCP was prepared by dynamic vulcanization. Gel content was noted. Tensile creep properties of these samples at elevated temperatures (70- 200?øC) were studied. Residual strain after 100% and 200% elongation were examined. EOC cross-linked with lower peroxide levels underwent creep failure easily at lower temperatures even with small loads. EOC with 0.6 wt. % of DCP was found to be the strongest even at higher temperatures and lower temperatures with heavier loads.
A STUDY ON INJECTION-STRUCTURE COUPLED ANALYSIS FOR THE PREDICTION OF INTEGRATED METAL INSERT INJECTION MOLDING PARTS
Baeg-Soon Cha, Hyung Pil Park, Gil-Sang Yoon, Byung-Gi Pyo, Won-Gil Ryim, Jae Hyuk Choi, Byung Ohk Rhee, May 2011
This study proposes an injection-structure coupled analysis to quickly predict the deformation of the insert parts of small precise connectors. The flow pattern was determined through an analysis of the plastic injection molding of small precise connectors, and a structural analysis was performed using injection pressure. For this purpose, an injection-structure mapping program was developed to use the injection molding pressure as the input to the boundary condition of the structural analysis. The effect of injection molding, which varies according to the process conditions of the metal insert parts of small connectors, was analyzed through structural analysis.
COMPARISON OF SERVO AND PNEUMATIC ULTRASONIC WELDING OF HDPE SHEAR JOINTS
Abbass Mokhtarzadeh, Avi Benatar, May 2011
Pneumatic and servo-driven ultrasonic welding of HDPE shear joints were studied. For pneumatic ultrasonic welding, the effects of weld force, down speed, and amplitude of vibration on weld strength were studied. For servo-driven ultrasonic welding, the effects of velocity, velocity profiling and collapse distance during hold on weld strength were studied. Our goal was not to optimize the welding conditions but rather compare the operation of the two systems. Both systems worked well and produced consistent welds. More work is needed with both systems to better understand the ramification of some of the controllable parameters.
RESIDUAL STRESS EVALUATION OF EASTMAN TRITANƒ?› COPOLYESTER, POLYCARBONATE AND THEIR BLENDS WITH ABS
Mark Treece, Gary Stack, May 2011
This study evaluates the residual stress levels in objects molded with Eastman's Tritan copolyesters and Edgetek XT (Tritan blends with ABS) compared to molding grades of Polycarbonate and PC/ABS. A layer removal technique and chemical solvent testing are employed for stress evaluation. Both methods show that molded-in stress levels of Tritan based materials are generally 0.2-0.5X lower than levels measured in PC-based products. Additionally, testing shows that ABS has little impact on the stress levels of either Tritan or PC. These results strongly reveal why Tritan containing products exhibit excellent chemical resistance performance in a variety of market applications.
EFFECT OF CRYSTALLIZATION AT FILM INTERFACE IN HEAT SEALING PROCESS
Ken Miyata, Tetsuo Abe, Hideki Tokanai, Akihiro Nishioka, Go Murasawa, Tomonori Koda, May 2011
Heat sealing is a general technique used for joining polymer film. The mechanism was not clarified. Heat seal temperature at sealed film interface is an important factor to control heat seal properties. In this study temperature profile at sealed film interface in-situ heat seal process was precisely measured by a fine thermocouple. Molecular structure development at film interface was investigated by WAXD and DSC. In heating and cooling process temperature profiles were obtained. The heating and cooling rate depended on crystallization behavior in heat sealing process. We concluded that crystallization is a major factor to affect heat seal properties.
MANUFACTURING OF AGAROSE-BASED CHROMATOGRAPHIC ADSORBENTS WITH CONTROLLED PORE AND PARTICLE SIZES
Nicolas Ioannidis, Andizej Pacek, James Bowen, Zhibing Zhang, May 2011
The effect of ionic strength and quenching temperature on the mechanical properties and structure of agarose-based chromatographic adsorbents in micro-beads for bioseparation was investigated. The pore size/size distribution of the beads was measured by analysis of their AFM images. Their mechanical properties were determined by a micromanipulation technique based on compression of single micro-particles. It was found that the mean pore size and stiffness of agarose beads increase with ionic strength and slow cooling. These two parameters do not affect the particle size/size distribution.
THE PREDICTION OF INJECTION MOULDED PRODUCT MASS THROUGH PROCESS SIGNALS
Umar Mohammad, Leigh Mulvaney-Johnson, Russell Speight, Phil Coates, May 2011
The injection moulding process has a complicated set of process parameters and is subject to variations over time resulting from material, environmental and machine component changes. In order to maintain product quality it has been proven that monitoring the process signals is beneficial towards identifying possible changes in the moulded product. Here, the process signals (melt pressure, temperature and screw displacement) are utilised along with material pressure-specific volume-temperature (pvT) characteristics to estimate the moulded product mass. The successful validation of this method presented over a range of processing conditions.
THE EFFECT OF NANOTUBE FEEDING POSITION IN TWIN-SCREW EXTRUSION OF PP BASED NANOCOMPOSITES
Michael Muller, Beate Krause, Bernd Kretzschmar, Petra Potschke, May 2011
The influence of feeding conditions of multiwalled carbon nanotubes (MWNT), namely Baytubes C150P and Nanocyl ›NC7000, into polypropylene (PP) was investigated with respect to achieve high electrical conductivity and suitable nanotube dispersion. Both MWNT types were fed at selected concentrations either in the hopper of the twin-screw extruder or using a side feeder under otherwise same conditions (rotation speed, throughput, temperature profile). The electrical resistivity was measured on pressed plates and injection moulded samples and the state of the filler dispersion was studied using transmission light microscopy (LM). Mechanical properties, like tensile and impact strength were characterised on injection moulded samples.
EFFECTS OF GAS AND D-LACTIC ACID CONTENTS ON THE STRUCTURE AND PROPERTIES OF MICROCELLULAR INJECTION MOLDED POLY (LACTIC ACID)
Hai-bin Zhao, Zhiziang Cui, Ziaofei Sun, Lih-Sheng Turnq, Xiang-Fang Penq, May 2011
This paper investigated the effect of gas content on the tensile properties and microstructure of two grades of poly (lactic acid) (PLA) that differ in terms of D-lactic acid (D-LA) content. SCF Nitrogen (N2) was used as the physical blowing agent for molding microcellular PLA tensile bars. The properties of microcellular PLA were found to be dependent upon the D-LA content. Under the most favorable conditions, high cell density and small cell size was obtained. A high cell nucleation rate and a high degree of crystallinity with different levels of D-LA enhanced microcellular structure formation at higher levels of N2.


This item is only available to members

Click here to log in

If you are not currently a member,
you can click here to fill out a member application.

We're sorry, but your current web site security status does not grant you access to the resource you are attempting to view.




spe2018logov4.png
  Welcome Page

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net