- CONNECTIONS
- CONVERSATIONS
- CONTENT
- PROMOTE YOUR BUSINESS
- BECOME A LEADER
The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.
The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?
In this paper, the mechanical properties of crosslinked Ethyl vinyl acetate (EVA) foams are discussed. An extensive range of mechanical tests with varied conditions were carried out. SEM results revealed the effect of different processing conditions on the foam morphology. The effect of cell density and the foam expansion ratio were then correlated with the mechanical properties of the foam.
Halogens are key components of many of the organic color compounds used in plastics, providing numerous needed benefits, especially heat stability during processing. Yet, despite the ubiquitous presence of halogens in nature, there have been requests for creating a palette of colors that are halogen-free. This paper will examine color space, looking at the halogen containing colorants and possible suitable alternates. It will attempt to characterize the problems and tradeoffs involved in creating, from existing chemistries, a new core group of halogen-free organic colors.
This paper investigates the foaming behavior of Ethyl-vinyl acetate (EVA). A foaming chamber was designed to prepare foam samples using carbon dioxide as the physical blowing agent. The amount of crosslinking agent used in preparing the crosslinked EVA was correlated with the foam morphology. It was found that an optimum degree of crosslinking lead to high quality EVA foams with high expansion ratios. Extensional viscosity data were measured to describe the observed phenomena.
Automotive OEMs have increasingly become more interested in monitoring cabin air quality inside the vehicle. This leads to the need for further understanding and testing of emissions from the various materials including plastic parts. Other industries such as cosmetics packaging or medical are also interested in emissions from materials. This paper looks at emissions testing in general, for POM specifically, effects of colorants and other additives on emissions, and formulations that significantly reduce these emissions from the molded part.
Dielectric, mechanical and thermal properties of BaTiO3 reinforced epoxy composites as a function of the filler size and concentration are studied. The effect of the filler dispersion method is also examined. In addition the properties of the BaTiO3/epoxy composites are compared to the properties of carbon reinforced epoxy nanocomposites. The carbon fillers used are carbon black, vapor grown carbon fibers and exfoliated graphite nanoplatelets. Finally, the synergy among the various fillers is also investigated.
Lexan* SLX1432 resin, based on resorcinol phthalates, has excellent weatherability and polycarbonate-like physical properties. The unique weatherability of these resins comes as a result of a photogenerated UV absorber (UVA) on the surface of a part. These resins have excellent colorability, gloss and property retention making them useful in a wide variety of outdoor injection molding and cap-layer applications.
Optimized cap design matched with standard tooling will be described along with the benefits of off-the-shelf coring components. Instead of the component being a slave to the part design, it's an improved plastic part design that carries with it benefits over previous part designs and the corresponding core and component.
This paper investigates the foaming behavior of Ethyl-vinyl acetate (EVA). A foaming chamber was designed to prepare foam samples using carbon dioxide as the physical blowing agent. The amount of crosslinking agent used in preparing the crosslinked EVA was correlated with the foam morphology. It was found that an optimum degree of crosslinking lead to high quality EVA foams with high expansion ratios. Extensional viscosity data were measured to describe the observed phenomena.
The use of seed oils derived polyols in high end polyurethane applications has been limited in the past by the reduced compatibility and reactivity. Flexible foams with up to 25 % substitution of the petroleum-based polyols with renewable component were produced and characterized, based on a new generation of plant oil based polyol. The technology brings significant enhancement in foam elastic properties and improved processing characteristics, allowing for a potentially higher penetration in automotive seating applications.
Extrusion foaming using supercritical carbon dioxide (CO2) as the blowing agent is an economically and environmentally benign process. However, it is difficult to control the foam density and maintain the thermal insulation performance. In this study, the extrusion foaming process of bimodal polystyrene foams was investigated by using CO2 as the blowing agent and water as the co-blowing agent. Compared to the extruded foam without water as co-blowing agent, the bimodal foams exhibit better thermal insulation property and compressive performance.
Long chain branched polypropylene (LCBPP) crystallizes rapidly and with high nucleation density. The origin of this fast crystallization process of is not well understood. It has been attributed to its complicated molecular architecture. In this research, we explore isothermal crystallization of LCBPP through rheological, thermal, and optical measurements. The time resolved mechanical spectroscopy technique was used to predict the liquid-to-solid transition (gel point) of LCBPP.
The influence of polymeric modifiers such as polyurea and polymethylhydrosiloxane on the properties of epoxy ester coatings was investigated. The corrosion resistance of the hybrid coatings was measured by direct current polarization method, DCP.The dynamic mechanical property of the coatings was determined by using dynamic mechanical spectroscopy. The electrochemical and thermo-mechanical performance of hybrid coatings was compared with those for the neat epoxy ester coating.
For polyolefin tubes exposed to chlorinated hot water, lifetime is estimated by a model of the depletion of antioxidant through diffusion and reaction with chlorine ions. A case study for typical tube geometries used in solar hot water applications at 50C is presented. Characteristic time scales demonstrate that the dominant mechanism for antioxidant depletion is the reaction with chlorine ions that diffuse into the polymer tube.
The growth of center cracks in biaxially confined membranes is monitored as a function of solvent evaporation. In a complimentary study, acoustic and membrane inflation techniques, applied to uncracked membranes, are used to calculate the stresses that cause crack propagation. By comparing the stresses induced in uncracked membranes with crack growth in cracked membranes we are able to calculate values of the stress intensity factor in biaxially constrained membranes with application to industrial coatings.
This paper describes the evaluation of mechanical test results of compounded used polyethylene (PE) pipes and plastic materials for recycle. A compounding technology of used PE pipes for gas distribution and waste polyethylene terephthalate (PET) bottles using a compatibilizer was firstly studied. Then the other combinations of used plastic materials and new resins were also investigated for material uses and high-performance polymer alloys.
We report the synthesis of novel polyurea networks produced via organic sol-gel chemistry, through the combination of an aliphatic triisocyanate with amine-functional polyether and poly(ethyleneimine) segments. Network formation is rapid and requires no catalyst. The resultant materials exhibit pH responsive swelling and show compatibility with human cells. As such, these materials have potential utility in cell culture as a means of stabilizing pH and delivering nutrients.
Biodegradable plastics have attracted much attention in the last decade, not only because they can divert waste from landfill, but also because the biodegradable functionality meets the requirement of many applications. Poly (hydroxy butanoic acid) or PHB copolymers is one such class of plastics. This paper will review the biodegradability of these polymers in various environments including soil, fresh water, seawater, compost and anaerobic digesters. Testing methods and variables influencing biodegradation will also be discussed.
Biodegradable plastics have attracted much attention in the last decade, not only because they can divert waste from landfill, but also because the biodegradable functionality meets the requirement of many applications. Poly (hydroxy butanoic acid) or PHB copolymers is one such class of plastics. This paper will review the biodegradability of these polymers in various environments including soil, fresh water, seawater, compost and anaerobic digesters. Testing methods and variables influencing biodegradation will also be discussed.
In this work, the effects of processing factors during injection-compression molding (ICM) on the thickness distribution of the polystyrene (PS) part are experimentally investigated. Moreover, the generalized Hele-Shaw flow simulation is carried out to predict the melt flow within the cavity during ICM, which gives insight into the backward melt flow and assists in interpreting the experimental observations of the part thickness distribution.
The long glass-fiber reinforced polyphenylene sulfide and short glass-fiber and long glass-fiber reinforced syndiotactic polystyrene by injection molding were tested to evaluate the long-term performance at the elevated temperature in water and in air. As a result, the tensile strength of PPS and SPS after 7000 hours at 150 degrees C in hot water decreased due to degradation at the interface between a matrix resin and a glass fiber.
Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:
Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.
Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.
If you need help with citations, visit www.citationmachine.net