SPE-Inspiring Plastics Professionals

SPE Library


SPE Library

The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!
Conference Proceedings
Magazine and Collected Articles
Newsletters (SPE Chapters)
Recycling
Rheology
Podcasts
Technical Article Briefs
Webinars
Plastic Surveys
Diversity. Equity and Inclusion
SPE News
SPE YouTube Channel
Event Recordings

Use % to separate multiple keywords. 


Search SPE Library
    
    




Sort By:  Date Added   Publication Date   Title   Author

Conference Proceedings

Dynamic Modeling for the Deformation and Breakup of Agglomerates in Polymer Melts
Takashi Moribe, James L. White, May 2004

A dynamic predictive model of the breakup process of agglomerates is developed by taking into consideration the hydrodynamic forces and the particle-particle interaction forces which induce flocculation in polymer melts. The breakup process of coagulated particles is numerically investigated by using the Discrete Element Method (DEM). The proposed DEM model we have developed describes the breakup phenomena, such as erosion, rupture, and coalescence, of agglomerates adequately in the various flow fields.

Mechanical Modeling and Surface Characterization of Scratch in Polymers
M. Wong, G.T. Lim, P.R. Rood, A. Moyse, J.N. Reddy, H.J. Sue, May 2004

In this paper, fundamental scratch behavior of polycarbonate (PC) was studied. Scratch tests were performed using a custom-built scratcher with a steel ball tip. Effects of scratch rates and loads on the damage phenomena in PC were investigated. Finite element (FE) modeling was executed to give a better understanding of the scratch deformation on polymers. Correlation between the FE and experimental results will be discussed. Extension of the present research to other polymers, like PMMA and TPO, will be presented.

The Development of High Melt Strength Polypropylene Using the Reactive Extrusion Process
Sang Hyun Park, Sang Min Han, Se Hoon Kim, Jung Soo Kim, May 2004

HMS-PP (High Melt Strength Polypropylene) was produced by using a 50 mm twin-screw extruder. This HMS-PP had a high strainhardening index enough to make stable foam cells and have no gels of cross-linked polypropylene. In this study, we used a mixture of polypropylenes having different MFR (melt flow rate) and a small amount of IPP (iso-propyl peroxydicarbonate) to get a high efficient HMS-PP. In addition to it, this HMS-PP was non-toxic because it was not made with an additional reactive monomer.

The Quaterrylimides - Highly Efficient NIR Absorbers for Plastics
Arno J. Boehm, Alban Glaser, Klaus Muellen, May 2004

A couple of years ago we developed a class of highly efficient organic NIR absorbers based on quaterrylenetetracarboxylic diimides ('quaterrylimides'), which exhibit photo- and thermostabilities at levels hitherto reserved exclusively to inorganic materials. In this paper we want to present models for the explanation of the unique photostability of this class of compounds, as well as recent advances in the synthesis of those materials, and examples for state-of- the-art plastics applications.

Modeling for Compaction of Particulate Materials
Mustafa E. Uygur, May 2004

Compaction of powders has been used in manufacturing of components for a broad range of application. In this paper compaction data for pure particulates and composite mixtures as well as mathematical models are presented. The model could successfully be used not only for metal powders but also for polymer and ceramic powders and/or their composite mixtures in order to predict their compaction behavior as a function of temperature and speed.

A Study of Nano-Titanium Dioxide Dispersed in PBT
Michel Lin, Yi-Fan Wu, Ying-Chih Liao, Ru-Shiang Kang, Yio-Chih Kao, Hsiau-Fu Shen, May 2004

A countercheck of dispersion effect by different types of dispersing agent and different shear stress of screw design has been investigated. Low shear one, not as we originally expected, showed a much more stable head pressure, which is an important parameter to monitor fabric extrusion, than a higher shear screw design. TGA was furthermore applied to confirm the weight loss after every single test.

Effect of Interphase Condition on Mechanical Properties in Polyamide Pre-Impregnated Glass Fiber Reinforced Polypropylene Composite
Machiko Mizoguchi, Satoko Baba, Hiroyuki Hamada, Weiling Wu, May 2004

In order to improve the mechanical properties of glass fiber reinforced polypropylene composite, the polyamide pre-impregnated glass fiber is candidate. The pre-impregnated resin distributed near the glass fiber and it would affect both the fiber length in molding and the interfacial properties. Consequently the tensile strength could be improved.

Effect of Gate Design when Molding Thermoplastic Elastomers
Rohan C. Dave, Carol M.F. Barry, May 2004

The depth, width and land length of an edge gate were systematically varied in order to assess guidelines for gates used in injection molding of thermoplastic elastomers (TPEs). Each gate design was evaluated using several classes of TPEs and a range of processing conditions.

Clay Nanocomposites in a Combustible Molded Material
Shawn J. Osborn, Nicholas G. Peth, May 2004

Flame retardant compounds are commonly used in industry. In this study, clay nanocomposites will be evaluated for their effectiveness to control combustion. The clay nanocomposites will be incorporated into the resin through injection molding. The effectiveness of the different percentage of nanocomposite will be compared using traditional flame retardant evaluation techniques and their ability to control combustion on the outside of the polymer.

The Effects of Pack Velocity on the Injection Molding Process
Michael VanDerKolk, May 2004

With the introduction of electric molding machines and upgraded technology, in molding, an un-developed part of the molding cycle is introduced; this piece of the cycle is known as pack velocity. This study will demonstrate how to set and optimize the pack velocity. The optimization is be evaluated by studying the effects of pack velocity on part weight (density), and part dimensions.

The Effects of a Change in Back Pressure on Polypropylene with Colorant
Stephanie L. Bullard, May 2004

The strength and viscosity of polypropylene is influenced by extreme stress during the injection process. The extreme stress on the material can be altered by changing the backpressure on the machine. The effects of extreme back pressure on polypropylene with colorant will be determined through tensile and impact testing. Numerous material trials will be conducted to prove the change in strengths.

A Perturbation Method to Characterize Reactive Extrusion
Mark D. Wetzel, Donald A. Denelsbeck, Susan L. Latimer, Chi-Kai Shih, May 2004

By means of a novel flow perturbation technique, fundamental details of reactive extrusion systems can be analyzed with respect to the chemical reaction rate, effects of catalyst and extrusion conditions, such as throughput and screw speed. A specialized, high-speed data acquisition system, the “Extrusion Pulse Analysis System” (EPAS) has been developed to enable on-line monitoring and data analysis of the imposed disturbances to provide real time diagnosis of extrusion processes in laboratory and manufacturing applications.

INSITE™ Technology - A Polymer Innovation
Kurt W. Swogger, May 2004

During the 1990’s and into the 2000’s, Dow has developed, launched and grown a family of products based on INSITE™ technology. This technology platform has and continues to spawn many product families because of its flexibility and its many scientific facets. Key to success is the integration of catalyst innovations, material science innovation, process innovation and application development process innovation into a wide range of products for many markets. The technology concept coined molecular architecture" continues to have wide utility and innovation in the marketplace."

Advanced Technologies for PC-ABS Blends
C.P. Bosnyak, L.R. Novak, S.A. Ogoe, H.T. Pham, S.R. Ellebracht, C-I. Kao, May 2004

Polycarbonate (PC)-acrylonitrile-butadiene-styrene terpolymer (ABS) blends continue to be improved to meet increased demands for reduced fabrication cycle time and balance of stiffness, toughness and heat resistance in markets such as automotive. This paper will address the science and technologies required for these blends to maintain their competitiveness and their growth in a global market-place.

EAA Copolymer Coated Metals for Cable Applications
Ken Bow, May 2004

The invention that led to the innovation was the synthesis of a random copolymer of ethylene and acrylic acid (EAA). It was discovered that this copolymer would adhere to metals. The innovation was the commercialization of Zetabon coated metals based on EAA coatings on aluminum or steel for cable shielding and armoring applications. The innovation became the enabling technology for a cable sheath design known as the bonded sheath, or laminate sheath, that is now the global standard for telecommunications cable.

New Developments in Water-Borne Polymer Processes
F. Joseph Schork, May 2004

This paper will highlight areas of promising research in the field of water-borne polymer products. Water-borne polymer products will be taken to mean polymer systems that are either polymerized in an aqueous medium, or applied from an aqueous medium. The talk will be limited to two-phase systems (emulsions, suspensions, etc.), and so water-soluble polymers will not be discussed.

Transient Heat Transfer Coefficients for the Solidification of Blow Molded Parts
H. Massé, P. Debergue, R. DiRaddo, May 2004

We have developed a simplified experimental set-up to measure the transient heat transfer coefficient between a heated polymer sheet and a controlled temperature aluminum plaque. The effect of using non-uniform heat transfer coefficients on the part cooling and solidification is determined for the prediction of the blow molding of an industrial scale part.

FE-Analysis of the Two-Step Stretch Blow Moulding Process
E.h. Walter Michaeli, Wolfgang Papst, May 2004

The initial temperature distribution in a PET-preform determines the quality of stretch blow molded bottles. A new heating simulation based on the zone method allows to determine the 3D temperature distribution to be used for a subsequent blowing simulation. Thus, the stretch blow molding process can be completely analyzed by a FEA. This can be used e.g. to improve the design of infrared-ovens.

Influence of the Stretch Blow Molding Processing Parameters on PET Bottles Properties
Maja Rujniæ-Sokele, Mladen Šercer, Igor ?ati?, May 2004

The paper deals with the analysis of the most influencing factors in the procedure of manufacturing poly(ethylene-terephtalate) bottles for packaging of table oil, injection stretch blow molding. The influence of individual manufacturing factors on the quality guidelines important in the manufacturing of PET bottles for table oil packaging, final volume, and post-shrinkage have been studied. The most influencing factors have been determined which affect the volume and shrinkage of PET bottles by using the central composite design.

Parison Formation in Blow Molding: Parison Dimension Prediction using Neural Network Model
Han-Xiong Huang, Song Lu, You-Fa Huang, May 2004

The parison dimension distributions during the parison formation in extrusion blow molding were determined by analyzing video images of the parison. Two BP neural network models were developed based on the experimental data. The prediction of the parison diameter and thickness distributions can be made on line at any parison length or any parison drop time within a given range using the models.







spe2018logov4.png
Welcome Guest!   Login

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers, ISBN: 123-0-1234567-8-9, pp. 000-000.
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net