SPE Library


The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 


Search SPE Library
    
    




Sort By:  Date Added   Publication Date   Title   Author

Conference Proceedings

Experimental and Numerical Studies of Blown Film Cooling
Johannes Wortberg, Jens Spirgatis, May 2004

Studies of blown film cooling were carried out to investigate interaction of cooling air flow and the heat transfer processes. Instabilities in the air flow were detected at several point in the cooling region which influences the local heat transfer.The results indicates the development of temperature fluctuation in the bubble which seem to be one of the main reasons for the formation of film thickness profile in extrusion direction.

The Effect of Extrusion Conditions and Material Properties on the Gas Permeation Properties of LDPE/LLDPE Silage Wrap Films
C. Laffin, G.M. Mc Nally, P.D. Forristal, P. O’Kiely, C.M. Small, May 2004

This work investigates the effect of extrusion processing conditions and co-monomer type on the gas permeation properties of LLDPE films containing polyisobutylene (PIB). The results show improved gas barrier properties with increasing polymer density and increase in film crystallinity and orientation as a result of extrusion processing conditions such as blow up ratios.

A Modeling of the Film Blowing Process by using Variational Principles
M. Zatloukal, J. Vl?ek, P. Sáha, May 2004

A simple equation with only four physical parameters for the description of the bubble shape (including HDPE wine-glass shape) has been derived from variational principles. The proposed equation was used in modeling of the film blowing process for a variety of process conditions and polymer melts, and a very good agreement between measured and simulated data was found.

Influence of Processing Conditions on the Mechanical Properties of Nylon 12 and LDPE Tubing
I. Moore, G.M. McNally, W.R. Murphy, May 2004

The effect of extrusion processing conditions on the mechanical and morphological properties of a range of nylon 12s and LDPEs was investigated. The results indicate that processing conditions had a more pronounced effect on the mechanical properties of nylon 12 tubes, in comparison to those produced from LDPE.

A Study on the Thermal Performance of Calibrators
O.S. Carneiro, J.M. Nóbrega, J.A. Covas, P.J. Oliveira, F.T. Pinho, May 2004

In this work a numerical code able to model the heat transfer in calibrators for extruded profiles is described and validated. For assessment purposes the numerical predictions are compared with analytical models and numerical results obtained with a commercial software. The routines developed are then used to identify the main process parameters and to estimate their relative importance.

Analysis of Flow in a Spiral Mandrel Die
Walter Michaeli, Peter Blömer, May 2004

For rheological design of spiral mandrel dies the most common calculation methods are segmenting the die into simplified geometries and calculating the characteristics of each flow segment analytically. In the past, one-dimensional flow was considered, but this assumption is deficient especially for low depth segments. In recent investigations IKV has studied three-dimensional flow conditions in a transparent test die and in 3D-FEA calculations. The results of these studies give the key to improve the calculation of spiral mandrel dies significantly.

Screw Design for Cooling Extruders
Chris Rauwendaal, May 2004

This paper presents a theoretical approach to the prediction of melt temperature profiles in cooling extruders. The effect of screw design on cooling performance in discussed. A new screw geometry is presented will substantially improved cooling capability. Initial performance data on a 200-mm cooling extruder are presented.

Processing Polyethylene Terephthalate on a Single Screw Extruder without Predrying Using Hopper- and Melt Degassing
Walter Michaeli, Torsten Schmitz, May 2004

Conventional PET processing requires pre-drying, an energy- and cost-consuming process limiting production flexibility. The paper presents combined hopper- and melt degassing in a single screw extruder as a real alternative to predrying and investigates the influence of extrusion- and degassing parameters, screw-design and water content on both intrinsic- and melt viscosity.

Practical Approach to Screw Breakage and How to Avoid Failures
Jeff A. Myers, May 2004

The use of practical mathematical expressions can be used to evaluate the mechanical strength of a rotating shaft. Similar expressions can be used in the design of a feedscrew. The purpose of this paper is to investigate the factors that influence the mechanical strength of a feedscrew and to show how to use these expressions from a practical standpoint to avoid failure during operation.

Effect of Screw Surface Properties on Extruder Performance
Chris Rauwendaal, May 2004

The surface condition of the screw and die can have a significant effect on extruder performance; however, little information about these effects is available in the open literature. This paper discusses various aspects of the screw surface conditions and how these can change the characteristics of the process and extruded product quality.

Die Lip Sensitivity in Cast Film Dies
Gary Oliver, May 2004

Die designs for production of cast polymer films typically include a flex lip for varying the geometry of the lip opening. The cast film process requires die lip gaps ranging from 0.4 mm to 0.8mm. Flex lip gap and the adjustment of said gap becomes increasingly difficult to control as it is reduced. An examination is made of the issue of die lip sensitivity with different polymers extruded at different lip openings.

Metering Channel Flows and Troubleshooting Single-Screw Extruders
Mark A. Spalding, May 2004

The manufacturing costs for a process depend highly on the proper operation of the extrusion equipment. In general, proper operation requires that the metering section of the screw be the rate-limiting step. Using drag flow and pressure flow calculations for the metering section is a simple method to determine if the section is the limiting step. This paper shows how these types of calculations can be used to determine if the screw and process are functioning properly.

Reactive Extrusion of Starch-Polyacrylamide Graft Copolymers
J.L. Willett, V.L. Finkenstadt, May 2004

Graft copolymers of starch and polyacrylamide have been prepared using a twin screw extruder. The effects of monomer/starch ratio and moisture content on conversion, graft efficiency, graft molecular weight, and frequency of grafting are discussed. Conversion of monomer to polymer exceeding 90% and grafting efficiencies exceeding 60% can be achieved by this process, with residence times of approximately 250 seconds or less.

Compatibilizing of PET/PA Blends with a New Coupling Agent in a Twin Screw Extruder
Edmund Haberstroh, Stephanie Lambertz, May 2004

Polyethylene terephthalate (PET) and Polyamide (PA) can be compatibilized in one process step on a twin screw extruder using a novel coupling agent. This reagent is able to react with PET as well as with PA which leads to Copolyesteramids. Until now a compatibilisation was only possible in a three step process, this new reagent makes a one step process possible.

The Effect of Multilayer Rheology on Coextrusion Die Design
Joseph Dooley, May 2004

Multilayer coextrusion is a process in which two or more polymers are extruded and joined together in a feedblock or die to form a single structure with multiple layers. This paper will discuss the proper techniques for using rheology data to design coextrusion dies based on experimental rheology data for monolayer and multilayer structures.

The Effect of Process Aids on Interfacial Instabilities in Coextrusion Flows: Theoretical and Experimental Investigation
M. Zatloukal, J. De Witte, May 2004

In this paper, the effect of process aids on the interfacial instabilities in coextrusion flows is investigated theoretically via viscoelastic FEM simulations as well as experimentally. Theoretically determined processing/materials rules according to which a stabilization effect with process aids can be achieved are compared and discussed with experimental results.

Interlayer Adhesion of Co-Extruded Sheets before and after Biaxial Stretching
Hongyi Zhou, May 2004

In order to quantify interlayer adhesion of co-extruded sheets with strong interlayer adhesion, a test method was developed to first initiate delamination by uniaxial stretching and then measure interlayer adhesion by peel test. The method was applied to co-extruded sheets before and after biaxial stretching. Interlayer adhesion with peel force as high as 5330N/m (30lb/in) have been measured for the as co-extruded sheets. Reduction of interlayer adhesion as a function of biaxial stretching was revealed.

Ultrasonic Monitoring of Barrel Wear and Screw Status
C.-K. Jen, Z. Sun, M. Kobayashi, May 2004

Four types of high temperature (HT) ultrasonic sensors have been installed at barrels and a flange of a 30-mm twin-screw extruder to non-intrusively and non-destructively measure barrel and screw wear, as well as screw misalignment and deflection during polymer extrusion. The sensors included sol-gel sprayed ultrasonic transducers (UTs), non-clad and clad buffer rod sensors, and stand-alone HTUTs. This study has demonstrated the capability of these ultrasonic sensors in monitoring the barrel and screw statuses at the pumping, mixing and melting zones of the extruder.

Development of a Stiff, Void Free, Low Density Plastic Wood Replacement
Jim Reilly, Roger Faulkner, Carl Hagberg, May 2004

Process studies attempting to produce a low density, wood like replacement involving Kenaf, Polypropylene and hollow glass spheres (bubbles") blends along with processing aids and compatibilizers have been investigated using a counter-rotating non-intermeshing (CRNI) twin screw extruder. Bubble breakage was higher than anticipated based on related work but in spite of the fairly low bubble survival rates nailability of the boards was improved. Bubble breakage and mechanical properties are presented along with a discussion of the narrow process window."

The Determination of the Best" Viscosity Model for Shear Thinning Fluids from Capillary Rheology Experiments"
W.A. Gifford, May 2004

This paper describes an algorithm used to determine a single viscosity correlation from capillary rheometer experiments. One can choose any one of seven commonly used models for shear thinning fluids. The program then determines the constants in the chosen model which best describes all of the experimental data in a statistical (i.e., least sum of squares) sense. By comparing the results from several different models, one can determine in a matter of minutes the model, which best describes the measured rheology data.










spe2018logov4.png
  Welcome Page

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net