The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.
Important Update: SPE's Technical Library Is Evolving The SPE Technical Library will be retired on September 15, 2025, as we transition to Polymer Insights—a powerful, AI-driven platform designed to transform how plastics professionals access and apply technical knowledge. Polymer Insights delivers answers and insights to your questions that are sourced entirely from SPE-curated content, including decades of peer-reviewed research, technical papers, and industry expertise. This new tool goes beyond search—providing intelligent, contextual results tailored specifically to you.
Open Access Preview: July 17–20, 2025
Be among the first to explore! From Thursday, July 17 through Sunday, July 20, Polymer Insights is open to all — no login required. Try it at www.polymerinsights.ai.
After July 20: Premium Members Only!
Don’t let this level of access end with the free trial!Starting on Monday, July 21, Polymer Insights will be exclusive to SPE Premium Members. Join SPE as a Premium member to keep unlimited access to this revolutionary tool!
The Advanced Material Division of 3M Company provides several additive classes for polymers used in various applications. 3M? Glass Bubbles can provide light weighting for polymers with and without reinforcing and other fillers. Up to 10% weight reduction can be achieved while maintaining physical properties. Weight reduction potential can be maximized when combined with MuCell? technology. 3M? Cooling Fillers can be used to provide high through plane thermal conductivity with high electrical resitivity. Polymer Processing Additives can be used to speed extrusion and prevent die lip build-up during masterbatch compounding or profile extrusion such as door ding strips, mud flaps and door seals.
Biodegradable nanocomposites were prepared from poly(butylene succinate) (PBS) and isora nanofiber (INF), a cellulosic nanofiber extracted from Helicteres isora. The nanocomposites were processed using a brabender twin-screw compounder and an injection-molding machine. The effects of INF on the mechanical (tensile and flexural), viscoelastic and thermal properties of the nanocomposites were investigated. The tensile and flexural moduli of PBS-INF nanocomposites increased with INF content, whereas the toughness and strain-at-break decreased. The tensile and flexural strengths increased up to 1.5phr INF loading beyond which they declined owing to agglomeration of INF. The storage modulus of the nanocomposites increased with the INF content. The addition of INF did not affect the Tg significantly. The area integration under tan ë curve decreased with INF loading indicating that PBS-INF nanocomposites exhibited more elastic behaviour with increasing INF. The addition of INF did not alter the thermal stability of PBS, significantly.
Dongjie Chen, Jian Wang, Lu Yang, Sui Wang, May 2015
Recyclable microcellular polypropylene (PP) single-polymer composites (SPCs) with uniaxial fibers were successfully produced by microcellular injection-molding process. Nitrogen in the supercritical state was used as the physical blowing agent in the microcellular injection molding experiments. The tensile properties of the microcellular PP SPCs with uniaxial fibers were determined. The microcellular PP SPC prepared with an injection pressure of 40 MPa, a nozzle temperature of 205 øC, a holding time of 5 sec and a cooling time of 20 sec has the tensile strength of 23.70 MPa, 24.34% higher than that of the microcellular non-reinforced PP, 7.93 % lower than that of the solid PP. The weight of the microcellular PP SPC is 1.024 g, 11.50% lower than that of the solid PP, 2.09% higher than that of the microcellular non-reinforced PP. The morphological properties were also observed using scanning electron microscope (SEM).
Lu Yang, Jiong Peng, Dongjie Chen, Jian Wang, May 2015
The internal circulation direct hydraulic two-platen clamping system opened a new era of the development of the injection molding machine. This paper established the hydraulic system models for the internal circulation clamping system by AMESim. Displacement of the moving platen, pressure in the mold-clamping cylinders and flow in the internal circulation valves were calculated. The simulation results showed that the system design was reasonable and reflected the real dynamic characteristics of hydraulic system. The modeling and simulation for the internal circulation two-platen injection molding machine laid the foundation for further studies.
Of the four pillars required for the successful development of a plastic part; material selection, part design, processing, and service environment, processing is often assumed to be the most controllable. Even when the service environment has been properly defined, the best design principles implemented, and the appropriate material selected, seemingly insignificant changes in processing can grossly and adversely affect an otherwise well developed product. This paper will explore two case studies where the failure of the parts can be traced directly back to changes in the processing parameters and how these changes ultimately predisposed them to premature failure.
With emphasis on weight reduction throughout the transportation industry, there is a renewed effort to remove as much mass as possible to improve vehicle performance.
JSP has developed and optimized a blow molding process that combines traditional blow molding with an injection molded particle foam core. This process; called Foamcore, utilizes traditional blow molding equipment combined with a particle foam injection unit to produce a composite blow molded part with a solid foam core.
JSP?s Foamcore technology allows for simpler designs, higher strength to weight ratios, lower part weight, all while using exiting tooling (with minor modifications). Multiple polymers can also be used including Polypropylene, Polyethylene, Polystyrene, etc. for both skin and core materials.
This paper will describe recent advancements of this technology, and how they allow for improved mechanical properties to be realized in the area of transportation applications for structural and semi-structural components. Other features discussed include improvements in thermal insulation, sound abatement, as well as recyclability and End-Of-Life requirements.
Sub-micron fibers are expected to bring value to applications where properties such as sound and temperature insulation, fluid holding capacity, softness, barrier property enhancement, high electrochemical activities (electrodes in fuel cells and Li-ion batteries) and filtration performance are needed. This presentation will focus on the various processes used for forming webs made up of sub-micron fibers and will review the latest technologies in Electrospinning, Meltblowing, Melt Fracture, Solution blowing, Bicomponent fiber formation, and Supersoninc nozzles.
Vinod Malshe, Rajen Raje, Leena Raje, Rupali Hande, May 2015
Roughly 1/3rd (1.3 billion tonnes) of the food produced in the world for human consumption gets wasted every year. Fruits and vegetables have highest wastage rates of almost 40-50%. This is partly due to ethylene action and improper storage and handling. Ethylene, a catalyst generated by climacteric fresh produce is responsible for their ripening. Ripened fruits have more risk of microbial spoilage due to increased sugar %. Improper handling, storage, lack of cold chain etc in post-harvest conditions further increases the loss. In the past, we have reported ?niche? technologies for fruit preservation, such as chemical agents responsible for adsorption and destruction of ethylene. In continuation, now we are introducing some more ?unique? technologies such as using a) Catalytic converters (of ethylene to ethylene oxide), b) Ethylene adsorbers and c) Halogen releasers. We believe that these simple and cost-effective techniques will be the trendsetters to reduce horticultural wastage considerably and in the end benefit the farmer, the retailer and also the consumer. Efficacy of these products was tested by using them as novel additives in flexible packaging, punnets etc. which are commercially used for storage and transport of various fruits and vegetables in which they were effective in reducing ethylene from the storage area. We also experimented use of these products by incorporating them in a plastic film and all through we could acquire considerable shelf life extension of both climacteric and non-climacteric fruits and vegetables. We firmly believe by using such value-added packaging post harvest horticultural losses will be considerably reduced and it can result in a service to mankind.
Many manufacturers of water-cooled extrusion equipment typically recommend that either distilled water or properly-treated water [1,2] be used to control barrel zone heater/cooler temperatures. While many industrial water treatment professionals treat and maintain cooling towers, chill rolls and other Utility Water Systems in extrusion plants, few, if any, have attempted to solve the corrosion, fouling and mineral deposition issues typically experienced in extruder barrel cooling systems (Process Water Systems).
This paper summarizes our experiences over the past fourteen years developing and successfully applying Extrusion Performance Fluids (EPF) as safe and effective coolants in water-cooled extrusion applications. Key documented case studies and simple extrusion maintenance procedures will be discussed which form the basis for a pending US Patent [3] on EPF and its associated technologies.
Yasaman Amintowlieh, Costas Tzoganakis, Alexander Penlidis, May 2015
Continuous photomodification of polypropylene (PP) has been conducted in order to scale up a previously developed batch process for commercialization purposes. Utilizing this process PP rheological properties were modified by incorporation of long chain branches (LCBs). Trimethylolpropane triacrylate (TMPTA) was employed as a coagent along with benzophenone (BPH), which was the photoinitiator. The effects of TMPTA presence, BPH concentration, and radiation duration on viscoelastic properties and gel content were studied. Gel permeation chromatography (GPC) was used to confirm formation of LCBs in the photomodified PP.
Nicholas Iorio, Christopher Thellen, Sarah L. Cheney, Lauri Kline, David Graham, Jo Ann Ratto Ross, May 2015
Hollow glass microspheres were investigated as an additive in extruded low density polyethylene films. Advantages of this technology may include reductions in plastic material costs, thermal conductivity, packaging weight, density and processing costs. Monolayer films were processed on a blown film extrusion line and characterized for morphology, thermal and mechanical properties. Optical microscopy showed that the microspheres were intact and density was lower than the neat low density polyethylene films.
The GDP contribution from the Industrial sectors is ~$25T, of which the Chemicals and Plastics Industry, is ~$4T in revenues. This traditionally product-centric industry is transforming into a market-facing growthmachine. While chemistry and product innovation will always be pillars of the industry's strength, prioritizationof the development efforts are shifting heavily towards marketing strategies and identification of attractive segments. However, Marketing and Segmentation strategies at chemical companies currently rely on the useof traditional methods such as expertise, relationships, customer feedback, sales calls, static market reports, strategy consultants and patent searches. On the other hand, the use of data, advanced data sciences andautomated intelligence is prevalent in the consumermarketingworld. This paper intends to open up and inspire possibilities in fully utilizing these advances in data sciences from the consumer space, and applying themto the industrial space, in tandem with the extraction of relevant dark data. Deep industry expertise can beaugmented by data sciences & big data analytics, mobile and social platforms and technology, to form a potent mix, which will catalyze this transformation.
This paper presents a methodology for the selection of thermoplastic materials in order to achieve the most cost effective manufacturing solution. Unlike conventional materials selection methods—which rely almost exclusively on quantitative performance data—this method relies on a comprehensive evaluation of cost, including material costs, processing costs, and the cost of secondary operations.
Dry food packaging typically contains a combination of polyethylene resins to provide toughness and barrier with a sealant layer to provide a specific shelf life. Development of the materials and resulting structures requires fundamental knowledge of structure / property relationships as well as the ability to tailor properties for in-use performance. Dow has been developing both resins and novel testing methodology to help expedite the development process, focusing on the consumer needs and benefits.
Epoxy-based liquids with adjustable viscosities were prepared by curing a two-component resin mixture at variable mixing ratios and their rheological properties were then characterized using a parallel plate rheometer. The viscosity was found to decrease as the portion of amine compound component decreased. Moreover, the rheological properties of such liquids were found to be highly thermally sensitive. At last, the authors proposed a possible mechanism to explain the viscosity change at different resin mixing ratios.
Joseph Dooley, Hyunwoo Kim, Patrick C. Lee, Robert Wrisley, May 2014
Multilayer coextrusion is a process in which two or more polymers are extruded and joined together in a feedblock or die to form a single structure with multiple layers. This paper will discuss the effect of experimentally measured multilayer rheology on the flow distribution in a coathanger style die.
Mohammad Meysami, Prashant Mutyala, Shuihan Zhu, Costas Tzoganakis, May 2014
Scrap EPDM rubber crumb was continuously devulcanized using supercritical CO2 in an industrial-scale twin screw extruder. A reasonably high throughput extrusion process has been developed and the effect of processing conditions has been studied. A central composite design with two factors was used to study the effects of screw speed and feed rate on the sol and gel fractions, degree of devulcanization, and Mooney viscosity of devulcanized rubber.
The GITBlow process, a combination of gas-assisted injection molding (“GIT”) and blow molding (“Blow”), allows the production of parts with complex functional geometries and thin-walled hollow spaces directly inside the mold. Part properties can be controlled by selective construction of characteristic part elements and modern methods for cooling control in the mold. Small variations of part geometry or of mold temperatures already show a positive influence on the resulting wall thickness distribution.
Kun S. Hyun, Myung-Ho Kim, Kyoo Ik Noh, Jeff A. Myers, May 2014
This paper introduces a new Engineering approach to improve and develop the manufacturing process of XPS Polystyrene form. The success in this process will trickle down to other foam processes to improve the productivity and energy savings.
Measuring the strength of a seal while it is still in the semi-molten state is important in determining if a film is suitable to withstand high loads at high packaging speeds. Without high hot tack strength, the contents of the package may break through the seal during the filling process. In this report, we will utilize Six Sigma methodology to: compare two different separation force hot tack testing machines, identify key variables in testing, and develop a set of standard testing conditions.
Kim McLoughlin Senior Research Engineer, Global Materials Science Braskem
A Resin Supplier’s Perspective on Partnerships for the Circular Economy
About the Speaker
Kim drives technology programs at Braskem to develop advanced polyolefins with improved recyclability and sustainability. As Principal Investigator on a REMADE-funded collaboration, Kim leads a diverse industry-academic team that is developing a process to recycle elastomers as secondary feedstock. Kim has a PhD in Chemical Engineering from Cornell. She is an inventor on more than 25 patents and applications for novel polyolefin technologies. Kim is on the Board of Directors of SPE’s Thermoplastic Materials & Foams Division, where she has served as Education Chair and Councilor.
A Resin Supplier’s Perspective on Partnerships for the Circular Economy
About the Speaker
Gamini has a BS and PhD from Purdue University in Materials Engineering and Sustainability. He joined Penn State as a Post Doctorate Scholar in 2020 prior to his professorship appointment. He works closely with PA plastics manufacturers to implement sustainability programs in their plants.
A Resin Supplier’s Perspective on Partnerships for the Circular Economy
About the Speaker
Tom Giovannetti holds a Degree in Mechanical Engineering from The University of Tulsa and for the last 26 years has worked for Chevron Phillips Chemical Company. Tom started his plastics career by designing various injection molded products for the chemical industry including explosion proof plugs and receptacles, panel boards and detonation arrestors for 24 inch pipelines. Tom also holds a patent for design of a polyphenylene sulfide sleeve in a nylon coolant cross-over of an air intake manifold and is a Certified Plastic Technologist through the Society of Plastic Engineers. Tom serves on the Oklahoma Section Board as Councilor, is also the past president of the local Oklahoma SPE Section, and as well serves on the SPE Injection Molding Division board.
Joseph Lawrence, Ph.D. Senior Director and Research Professor University of Toledo
A Resin Supplier’s Perspective on Partnerships for the Circular Economy
About the Speaker
Dr. Joseph Lawrence is a Research Professor and Senior Director of the Polymer Institute and the Center for Materials and Sensor Characterization at the University of Toledo. He is a Chemical Engineer by training and after working in the process industry, he has been engaged in polymers and composites research for 18+ years. In the Polymer Institute he leads research on renewably sourced polymers, plastics recycling, and additive manufacturing. He is also the lead investigator of the Polyesters and Barrier Materials Research Consortium funded by industry. Dr. Lawrence has advised 20 graduate students, mentored 8 staff scientists and several undergraduate students. He is a peer reviewer in several journals, has authored 30+ peer-reviewed publications and serves on the board of the Injection Molding Division of SPE.
Matt Hammernik Northeast Account Manager Hasco America
A Resin Supplier’s Perspective on Partnerships for the Circular Economy
About the Speaker
Matt Hammernik serves as Hasco America’s Northeast Area Account Manager covering the states Michigan, Ohio, Indiana, and Kentucky. He started with Hasco America at the beginning of March 2022. Matt started in the Injection Mold Industry roughly 10 years ago as an estimator quoting injection mold base steel, components and machining. He advanced into outside sales and has been serving molders, mold builders and mold makers for about 7 years.
84 countries and 85.6k+ stakeholders strong, SPE
unites
plastics professionals worldwide – helping them succeed and strengthening their skills
through
networking, events, training, and knowledge sharing.
No matter where you work in the plastics industry
value
chain-whether you're a scientist, engineer, technical personnel or a senior executive-nor
what your
background is, education, gender, culture or age-we are here to serve you.
Our members needs are our passion. We work hard so
that we
can ensure that everyone has the tools necessary to meet her or his personal & professional
goals.
Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:
Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers, ISBN: 123-0-1234567-8-9, pp. 000-000.
Available: www.4spe.org.
Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.