SPE Library

The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 

Search SPE Library
Keyword/Author:
After Date: (mm/dd/yy)  
 
Sort By:   Date Added  ▼  |  Publication Date  ▼  |  Title  ▼  |  Author  ▼
= Members Only
Conference Proceedings
A QUANTITATIVE COMPARISON AND VALIDATION OF CAE SOFTWARES SIMULATION THE INJECTION MOLDING PROCESS
Brendan A. Zarechian, May 2008
This paper investigates two well known Computer Aided Engineering (CAE) softwares that simulate the plastics injection molding process. All aspects of the simulation were taken into account, from mesh to material data and feed system design. For validation purposes two different parts with varying geometries and with two different materials were used to reach further into the spectrum of the simulations. Typical results were examined, such as fill time and part temperature, but also flow patterns, flow leading behavior, and other special interest results. Although the approach was quite different for each software, results showed very similar outcomes.One software had more accurate results, whereas the other having a less average variance from experimentally found results.
STUDY OF THE MORPHOLOGY AND PROPERTIES OF THE PP/EPOXY BLENDS
Xueliang Jiang, May 2008
In this paper effects of dynamical cure and compatibilization on the morphology and properties of the PP/epoxy blends were studied. The addition of maleic anhydride-grafted polypropylene (MAH-g-PP) and dynamical cure of epoxy by dicyanamide give rise to decrease the average diameter of epoxy particles in the PP/epoxy blends. Dynamical cure of the epoxy resin leads to an improvement in the modulus and strength of the PP/epoxy blends and the addition of MAH-g-PP results in an increase in the impact strength. Wide-angle X-ray diffraction (WAXD) analysis shows that the PP/epoxy blends have the same crystalline structure as pure PP indicating dynamical cure and compatibilization do not disturb the crystalline structure of the PP/epoxy blends.
STUDY OF THE MORPHOLOGY AND PROPERTIES OF PP/EXOPY BLENDS
Xueliang Jiang, May 2008
In this paper, effects of dynamical cure and compatibilization on the morphology and properties of the PP/epoxy blends were studied.The addition of maleic anhydride-grafted polypropylene (MAH-g-PP) and dynamical cure of epoxy by dicyanamide give rise to decrease the average diameter of epoxy particles in the PP/epoxy blends. Dynamical cure of the epoxy resin leads to an improvement in the modulus and strength of the PP/epoxy blends, and the addition of MAH-g-PP results in an increase in the impact strength. Wide-angle X-ray diffraction (WAXD) analysis shows that the PP/epoxy blends have the same crystalline structure as pure PP, indicating dynamical cure and compatibilization do not disturb the crystalline structure of the PP/epoxy blends.
AUTOMATIC MOLD DESIGN WITH KNOWLEDGE MANAGEMENT
Wen-Ren Jong , Tai-Chih Li , Shia-Chung Chen , Chun-Jen Shih , Po-Jung Lai , Chun-Hsien Wu , Ming-Yan Li, May 2008
With the flourishing development of 3C industry the products are becoming more and more diversified and the life cycle keeps reducing. Nowadays in order to maintain and enhance competitiveness it is important for enterprises to shorten the time of mold design and manufacturing train new engineers in the shortest time and upgrade the quality of products. This paper presents a mold-design navigating system with knowledge management; especially for some automatic design capabilities of core-cavity separation interference detection and cooling-line design safety. Not only do these functions save design time and prevent man-made errors but they also accumulate enterprise knowledge to provide consistent transparent systematic and reasonable mold-design. Each function is executed in a navigated process with built-in knowledge to offer the capabilities of automatic design.
AUTOMATIC MOLD DESIGN WITH KNOWLEDGE MANAGEMENT
Wen-Ren Jong , Tai-Chih Li , Shia-Chung Chen , Chun-Jen Shih , Po-Jung Lai , Chun-Hsien Wu , Ming-Yan Li, May 2008
With the flourishing development of 3C industry, the products are becoming more and more diversified and the life cycle keeps reducing. Nowadays, in order to maintain and enhance competitiveness, it is important for enterprises to shorten the time of mold design and manufacturing, train new engineers in the shortest time, and upgrade the quality of products.This paper presents a mold-design navigating system with knowledge management; especially for some automatic design capabilities of core-cavity separation, interference detection, and cooling-line design safety.Not only do these functions save design time and prevent man-made errors, but they also accumulate enterprise knowledge to provide consistent, transparent, systematic, and reasonable mold-design. Each function is executed in a navigated process with built-in knowledge to offer the capabilities of automatic design.
INTEGRATION OF MOLD DESIGN AND MOLD MANUFACTURING
Wen-Ren Jong , Tzu-Chun Lin , Po-Jung Lai , Tai-Chih Li , Chun-Hsien Wu , Ming-Yan Li, May 2008
In recent years mold manufacturing and development has become more and more complex because of the diversity of market demand and the time reduction of product manufacturing. Due to the diversities of the product it is almost impossible to manage and arrange all mold components effectively during the process of manufacturing. Therefore this research utilizes the embedded functions of CAD (Pro/E Wildfire) to combine mold-manufacturing planning system with CAD tool. The personnel of production management only need to go through the interface of planning system and the standardized process step by step. Then it reduces the chances of errors occurring during operation and improves the efficiency of production as well. Mold-manufacturing planning system can be integrated with mold-design navigating system. The design can be arranged directly through planning system and it makes the system consistent and efficient so that the personnel of production management are able to arrange schedule easily.
INTEGRATION OF MOLD DESIGN AND MOLD MANUFACTURING
Wen-Ren Jong , Tzu-Chun Lin , Po-Jung Lai , Tai-Chih Li , Chun-Hsien Wu , Ming-Yan Li, May 2008
In recent years, mold manufacturing and development has become more and more complex because of the diversity of market demand and the time reduction of product manufacturing. Due to the diversities of the product, it is almost impossible to manage and arrange all mold components effectively during the process of manufacturing. Therefore, this research utilizes the embedded functions of CAD (Pro/E Wildfire) to combine mold-manufacturing planning system with CAD tool. The personnel of production management only need to go through the interface of planning system and the standardized process step by step. Then, it reduces the chances of errors occurring during operation and improves the efficiency of production as well. Mold-manufacturing planning system can be integrated with mold-design navigating system. The design can be arranged directly through planning system, and it makes the system consistent and efficient so that the personnel of production management are able to arrange schedule easily.
THE DEPENDENCE OF WALL THICKNESS ON CHANGES IN MATERIAL AND PROCESS CONDITIONS IN PLUG ASSIST THERMOFORMING
Christina Sabine Härter , Hans-Gerhard Fritz, May 2008
The European Commission 6th Framework Program Cooperative Research Project “Plug Materials Influence on Final Part Quality in the Thermoforming Process” with Project acronym “PlugIn” has as its goal to improve the understanding of plug assist thermoforming to increase productivity and competitiveness of the European thermoforming industry. This paper presents the PlugIn project work investigating the dependence of part wall thickness due to changes in plug-sheet material combination plug geometry plug velocity plug depth and forming temperature.
THE DEPENDENCE OF WALL THICKNESS ON CHANGES IN MATERIAL AND PROCESS CONDITIONS IN PLUG ASSIST THERMOFORMING
Christina Sabine Härter , Hans-Gerhard Fritz , Noel Tessier , Karel Kouba, May 2008
The European Commission, 6th Framework Program, Cooperative Research Project ƒ??Plug Materials Influence on Final Part Quality in the Thermoforming Processƒ? with Project acronym ƒ??PlugInƒ? has as its goal to improve the understanding of plug assist thermoforming to increase productivity and competitiveness of the European thermoforming industry. This paper presents the PlugIn project work investigating the dependence of part wall thickness due to changes in plug-sheet material combination, plug geometry, plug velocity, plug depth and forming temperature.
ASSESSING THE THERMOFORMABILITY OF HIGH-PERFORMANCE POLYMERS FOR USE IN MEDICAL PACKAGING APPLICATIONS
T.P. O’Brien , G.M. McNally , W.R. Murphy , B.G. Millar , G.S. Garrett , A.H. Clarke, May 2008
A considerable number of polymers are available for usein medical and pharmaceutical packaging applications.Polymers such as polypropylene glycol modifiedpoly(ethylene terephthalate) polyacrylonitrile cyclicolefin copolymer and polychlorotrifluoroethylene exhibitdifferent mechanical and thermal properties therebyrequiring different processing conditions. Thethermoformability of these different polymers can beassessed in order to establish relative performance metricsprior to full scale production trials. This paper presentsmethods and analyses for assessing thermoformability.
THE ROLE OF GRAFTING DEGREE IN THE DISPERSION OF SILICA/POLYACRYLATE NANOCOMPOSITE PARTICLES INTO POLYACRYLATE MATRIX
He-ming Lin , Zhi-Qi Cai , Yan Yuan , Lin Lei , Dong-ming Qi, May 2008
A series of ‘guava-like’ silica/polyacrylate nanocomposite particles with different grafting degrees were prepared via mini-emulsion polymerization. The silica/polyacrylate composite particles were melt-mixed with unfilled polyacrylate resin to prepare the corresponding silica/polyacrylate molded composites and the dispersion mechanism of these silica particles from the ‘guava-like’ composite particles into polyacrylate matrix was studied by the section transmission electron microscope (TEM) micrographs of silica/polyacrylate molded composites. It was found that the grafting degree of silica particles played a crucial role in the dispersion of silica/polyacrylate composite particles into the polyacrylate matrix.
THE ROLE OF GRAFTING DEGREE IN THE DISPERSION OF GUAVA-LIKE SLICE/POLYACRYLATE MATRIX
He-ming Lin , Zhi-Qi Cai , Yan Yuan , Lin Lei , Dong-ming Qi, May 2008
A series of guava-like silica/polyacrylate nanocomposite particles with different grafting degrees were prepared via mini-emulsion polymerization. The silica/polyacrylate composite particles were melt-mixed with unfilled polyacrylate resin to prepare the corresponding silica/polyacrylate molded composites, and the dispersion mechanism of these silica particles from the ƒ??guava-likeƒ?? composite particles into polyacrylate matrix was studied by the section transmission electron microscope (TEM) micrographs of silica/polyacrylate molded composites. It was found that the grafting degree of silica particles played a crucial role in the dispersion of silica/polyacrylate composite particles into the polyacrylate matrix.
NEW PERSPECTIVE ON HEAT DEFLECTION TEMPERATURE OF GLASSY POLYCARBONATE
Xiangyang Li , James Mason, May 2008
For polycarbonate the HDT values can vary over 20±C. Many factors a®ect the test results. Among these ther- mal dilatation and creep were discussed in detail. Quan- titatively the contribution from thermal dilatation to HDT values varies little with physical aging time but the contribution from creep to HDT values changes greatly. When creep is insigni¯cant the HDT values can be cal- culated from an elastic beam de°ection equation and are close to the Tg values. This paper qualitatively disputes the claims of the e®ect of residual stress on HDT values. It is argued that changes in residual stress level and HDT values with physical aging are symptoms of the structural relaxation but no causal e®ect exists between these two symptoms. As a test method for amorphous polymers Vicat or Tg can provide more reliable results than HDT.
NEW PERSPECTIVE ON HEAT DEFLECTION TEMPERATURE OF GLASSY POLYCARBONATE
Xiangyang Li, May 2008
For polycarbonate, the HDT values can vary over 20?øC. Many factors affect the test results. Among these, thermal dilatation and creep were discussed in detail. Quantitatively, the contribution from thermal dilatation to HDT values varies little with physical aging time, but the contribution from creep to HDT values changes greatly. When creep is insignificant, the HDT values can be calculated from an elastic beam deflection equation and are close to the Tg values. This paper qualitatively disputes the claims of the effect of residual stress on HDT values. It is argued that changes in residual stress level and HDT values with physical aging are symptoms of the structural relaxation, but no causal effect exists between these two symptoms. As a test method for amorphous polymers, Vicat or Tg can provide more reliable results than HDT.
POLYMER-POLYMER INTERFACIAL SLIP MEASUREMENTS IN MULTILAYERED FILM
Patrick C. Lee , Hee Eon Park , Christopher W. Macosko , John M. Dealy, May 2008
Significant slip can occur during flow of twoimmiscible polymers due to reduced entanglements at theirinterface. The slip is of practical importance because of itseffect on morphology and adhesion of these multi-phasematerials such as disordered two-phase blends andmultilayer films. Using rheological technique we studiedthe interfacial slip in co-extruded multilayer films. Theviscosity drop of a multilayer sample below the averageviscosity of two neat components was observed for bothpolypropylene/polystyrene and polyethylene/fluoropolymer systems indicating interfacial slip.Furthermore the viscosity drop of a multilayer sampleincreased with the number of layers.
POLYMER-POLYMER INTERFACIAL SLIP MEASUREMENTS IN MULTILAYERED FILM
Patrick C. Lee , Hee Eon Park , Christopher W. Macosko , John M. Dealy, May 2008
Significant slip can occur during flow of two immiscible polymers due to reduced entanglements at their interface. The slip is of practical importance because of its effect on morphology and adhesion of these multi-phase materials, such as disordered two-phase blends and multilayer films. Using rheological technique, we studied the interfacial slip in co-extruded multilayer films. The viscosity drop of a multilayer sample below the average viscosity of two neat components was observed for both polypropylene/polystyrene and polyethylene /fluoropolymer systems, indicating interfacial slip. Furthermore, the viscosity drop of a multilayer sample increased with the number of layers.
STUDY OF TAKE-UP VELOCITY IN ENHANCING TENSILE PROPERTIES OF ALIGNED ELECTROSPUN NYLON 6 FIBERS
John Najem , Shing-Chung Wong, May 2008
The variation of both the tensile properties and the thermal properties of aligned electrospun fibers with the take-up velocity (TUV) of disc collector have not been widely investigated due to the difficulty of handling aligned nanofibers and measuring low loads. In this paper 25% of nylon 6 solution was electrospun into fibers and the fibers were aligned using a rotating disc collector. We evaluated both the mechanical and the thermal properties of aligned electrospun nylon 6 nanofibers having a diameter less than 200 nm as a function of the TUV based on a disc collector. It was determined that by increasing the TUV from 14.2 m/s to 21.4 m/s the tensile properties showed a substantial increase including the elastic modulus the strain energy density and the tensile strength which increased by 108% 100% and 75% respectively. Meanwhile the melting temperature remained the same compared to the bulk material.
STUDY OF TAKE-UP VELOCITY IN ENHANCING TENSILE PROPERTIES OF ALIGNED ELECTROSPUN NYLON 6 FIBERS
John Najem , Shing-Chung Wong, May 2008
The variation of both the tensile properties and the thermal properties of aligned electrospun fibers with the take-up velocity (TUV) of disc collector have not been widely investigated due to the difficulty of handling aligned nanofibers and measuring low loads. In this paper, 25% of nylon 6 solution was electrospun into fibers and the fibers were aligned using a rotating disc collector. We evaluated both the mechanical and the thermal properties of aligned electrospun nylon 6 nanofibers, having a diameter less than 200 nm, as a function of the TUV based on a disc collector. It was determined that by increasing the TUV from 14.2 m/s to 21.4 m/s, the tensile properties showed a substantial increase including the elastic modulus, the strain energy density, and the tensile strength which increased by 108%, 100%, and 75%, respectively. Meanwhile, the melting temperature remained the same compared to the bulk material.
3D SIMULATIONS OF A REACTIVE FLOW IN SCREW ELEMENTS OF CLOSELYINTERMESHING TWIN SCREW EXTRUDERS: A SCALE-UP ANALYSIS
Estanislao Ortiz-Rodriguez , Costas Tzoganakis, May 2008
The peroxide-initiated degradation of polypropylene in fully-filled screw elements of closely intermeshing twinscrew extruders is being analyzed. For this purpose threedimensional simulations are being implemented to describe this reactive flow in screw elements of two different size extruders. The effects of the initial peroxide concentration mass throughput and especially extruder size on the final weight-average molecular weight and poly-dispersity index of the product are studied. In relation to the later the temperature of reaction resulting from the specified processing conditions is discussed.
3D SIMULATIONS OF A REACTIVE FLOW IN SCREW ELEMENTS OF CLOSELYINTERMESHING TWIN SCREW EXTRUDERS: A SCALE-UP ANALYSIS
Estanislao Ortiz-Rodriguez , Costas Tzoganakis, May 2008
The peroxide-initiated degradation of polypropylene in fully-filled screw elements of closely intermeshing twinscrew extruders is being analyzed. For this purpose, threedimensional simulations are being implemented to describe this reactive flow in screw elements of two different size extruders. The effects of the initial peroxide concentration, mass throughput, and, especially, extruder size on the final weight-average molecular weight and poly-dispersity index of the product are studied. In relation to the later, the temperature of reaction resulting from the specified processing conditions is discussed.


This item is only available to members

Click here to log in

If you are not currently a member,
you can click here to fill out a member application.

We're sorry, but your current web site security status does not grant you access to the resource you are attempting to view.




spe2018logov4.png
  Welcome Page

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net