SPE Library

The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 

Search SPE Library
Keyword/Author:
After Date: (mm/dd/yy)  
 
Sort By:   Date Added  ▼  |  Publication Date  ▼  |  Title  ▼  |  Author  ▼
= Members Only
Conference Proceedings
What Every Plastics Professional Should Know About Patents and Patenting - Part 2: Important Considerations in Invention Patenting
Amad Tayebi, May 2006
Deciding on what to claim in a patent application and targeting the claims for specific business objectives are very important legal and business decisions. In this article, important considerations influencing such decisions are discussed, including the prior art, patentability of the claimed invention and defining claim terms. Relevant examples are given to illustrate such considerations.
Statistical Tools for Predicting Flame Resistance of PC/ABS Blends
Srinivas Siripurapu, Naveen Agarwal, May 2006
Flame-retarded products must pass the requirements of UL94 testing. Only a pass/fail type of data is obtained which makes it difficult to predict longterm capability. This paper describes statistical tools to predict UL94 V and 5V capability of PC/ABS blends for robust design of such products. In particular, use of parameters such as probability of first-time-pass, p(FTP), for V-testing, and time-to-drip (TTD) and time-to-hole (TTH) for 5V-testing is described.
Design for Six Sigma and Product Development in the Plastics Industry
Vinny Sastri, May 2006
Developing a product that meets the customer’s requirements requires a collaborative effort from marketing, technology, manufacturing and other functions across the organization. Customer’s requirements should be translated to specific product properties and specifications. The designed product must be robust during manufacturing and should be shipped to the customer on time and with the right quality. This paper describes the value of critical parameter management using Design for Six Sigma rigor with a case study.
Study on Mechanical Properties of Dynamically Cured Novolac/PP Blends
Limei Cui, Yong Zhang, Yinxi Zhang, May 2006
In this paper, the dynamic vulcanization process was applied to polypropylene (PP) and novolac type phenolic resin blends compatibilized with maleic anhydride-grafted PP (MAH-g-PP). The influences of dynamic cure and novolac content on mechanical properties of the PP/novolac blends were investigated. The results showed that the dynamically cured PP/MAH-g-PP/novolac blends had better mechanical properties and thermal stability than that of uncured PP/novolac blends, uncured PP/MAH-g-PP/novolac and dynamically cured PP/novolac blends.
High Strength Cellulose Triacetate Fibers
S.R. Allen, May 2006
Sign (+/-) of birefringence observations are shown to be a powerful tool for development of high strength cellulose triacetate and regenerated cellulose fibers. These simple observations provide a means to monitor both the extent and uniformity of reaction in the preparation of cellulose triacetate using heterogeneous acetylation conditions. Possible deacetylation of the triacetate during liquid crystalline fiber processing from trifluoroacetic acid solvent systems, and relationship to fiber strength are also described.
Recycling Thermosets: The Use of High-Pressure High-Temperature Sintering (HPHTS) and Degraded Material as Means of Producing New Products
Drew E. Williams, Richard J. Farris, May 2006
High-Pressure High-Temperature Sintering (HPHTS) of waste thermosets allowed for the production of new parts from 100% recycled material. This technique along with utilizing degraded material as filler has resulted in the successful recycling of thermosetting materials at high recycle levels. Finally, Chemicals Stress Relaxation experiments offered excellent insight into the mechanism of HPHTS and the degradation process.
Mechanical Properties of Injection-Molded Fiber-Reinforced Parts Theory and Verification
Cristoph Hinse, Reinhard Haag, May 2006
Mechanical properties of fiber-reinforced plastic parts largely depend on fiber orientation obtained from flow simulation to calculate anisotropic properties. This paper describes theoretical and experimental studies which showed the effects of linking process simulation and structural mechanical analysis to optimize the design process.
True 3D Numerical Simulation for Micro Injection Molding
WenHsien Yang, Dan Chang, Venny Yang, PeiChi Chang, ShengJye Hwang, May 2006
The demand for miniature molded parts has been growing over last decade. The filling in micro structure regions are primarily 3D and hence cannot be properly modeled by the 2.5D approach. A 3D model is developed to simulate the micro molding. The numerical results are compared with the experiment.
True 3D CAE Visualization of Intra-Cavity" Filling Imbalance in Injection"
Jimmy C. Chien, Chao-Tsai Huang, Wen-Hsien Yang, David C. Hsu, May 2006
The intra-cavity flow imbalanced phenomena have been discovered in either a single cavity or a multi-cavity mold, and result in the uneven product quality within one cavity. In this paper, 3D numerical simulation method is applied to realize this imbalanced phenomenon and its physical mechanism.
Drop Test of a Compound Structure Composed of PC Plate and PCB
Shia-Chung Chen, Lei-Ti Huang, Zong-Wei Huang, Tong-Yue Wu, May 2006
This paper proposes a feasible procedure in which both experiment and simulation are iteratively used to assess the responses to drop tests. An example of compound structure, which is basically comprised of a PC plate and PCB, was tested and simulated to show the performance of the proposed procedures. Compared with the results of a patented drop test platform, our test results not only achieved good correlations, but computational cost could also be considerably reduced.
Barrier Properties of Linear Polyethylene Films
Arild Follestad, Jorunn Nilsen, Irene Helland, May 2006
Barrier and permeability is important in several PE applications. This study gives a broad mapping of how permeability depends on the PE and on film thickness.PE’s were blown to films and permeability for water vapor measured. The results were expressed by:Permeability coefficient = (Amorphous fraction)* (Amorphous fraction dependent factor) * (Correction factor) / Thickness.The amorphous fraction dependent factor has two different regimes depending on amorphous fraction.The correction factor, which is basically 1, increases with decreasing amorphous fraction, MFR and film thickness.
Cae Analysis of Rapid Thermal Response Molding Process for Thin Wall Parts
Keun Park, Byung Kim, Donggang Yao, May 2006
The present work covers simulation of thin wall molding using the Rapid Thermal Response (RTR) molding process. In order to account for the unique thermal boundary conditions of the RTR mold, coupled analysis with heat transfer simulation is suggested. Both numerical and experimental results show good flow estimation and birefringence prediction under rapid mold heating.
True 3D and Fully Transient Mold Temperature Simulation for RHCM Process
YuFeng Chen, Venny Yang, WenHsien Yang, Rong-Yeu Chang, May 2006
In the Rapid Heat Cycle Molding (RHCM) Process, the mold temperatures are usually quit high during filling and get cooled quickly in the cooling phase. A true 3D and transient thermal response heating and cooling analysis model is proposed to help analysis and optimize the process.
Rapid Mold Temperature Control on Micro Injection Molded Parts with High Aspect Ratio Micro-Features
J.A. Chang, S.C. Chen, J.C. Cin, May 2006
Electromagnetic induction heating combined with water cooling are utilized to achieve a rapid mold surface temperature control for micro-feature injection molding process. Replication in molding micro features is greatly improved by rapid mold surface temperature rise within 60° to 140° using induction heating for about 2 to 3.5 seconds. Simulation shows that the E.M. wave can penetrate into micro channel bottom and cause about 2° difference temperature uniformity. For PMMA, complete replication of the 600µm depth and 30-50µm thick micro feature was achieved.
Three-Dimensional Numerical Approach for Core Plate Deflection
Allen Y. Peng, David C. Hsu, Chia-Hsun Chen, May 2006
Non-uniform melt flow around the core plate during injection molding process can cause the plate to deflect during filling and packing stage. Moreover, this core deflection might result variations in wall thickness, especially for thin parts. In this paper, an effective 3D numerical approach is developed to simulate uneven melt pressure around core during injection molding and further predict the core deflection. One case is reported to indicate the success of the present model.
Effect of Epoxy Modifier on Flame Retardancy and Rheological Behavior of Acrylonitrile-Butadiene-Styrene(ABS)/Montmorillonite(MMT) Composites
Bo Liu, Yong Zhang, Chaoying Wan, Yinxi Zhang, May 2006
ABS/MMT composites were prepared via melt intercalation to MMT with or without pretreatment of liquid epoxy resin. For the direct addition of epoxy, the composite has intercalated structure; while for the pretreatment of MMT with epoxy, the composite has exfoliated structure. Cone analysis results reveals slight difference in flame retardancy between the two composites. At low frequency zone, the composite with intercalated structure has higher storage modulus than the composite with exfoliated structure.
Mold Deformation Effects on Ultra-Thin Wall Injection-Molded Parts
Rong-Yeu Chang, Allen Y. Peng, Wen-Hsien Yang, May 2006
Ultra-thin-walled injection molding is becoming important due to the explosive growth of requirement of thinner and lighter plastic parts, especially for portable electronic devices. However, the flow pressure and the uneven mold temperature in injection molding will cause variations in cavity dimension, and further reduce the precision of molding. In this paper, a 3D numerical approach is developed to predict the mold deformation effects and the variations of ultra-thin-walled part dimensions.
Polypropylene/SEBS Thermoplastic Elastomer - Nanocomposite Films
C.M Small, G.M. Mc Nally, P. McShane, I. Kenny, May 2006
Nanocomposite (PP/SEBS/organoclay) films were sheet extruded with differing clay concentrations. Blends were compounded using a high shear single screw reciprocating kneader. Higher clay content increased the Shore A hardness of the films but induced a significant improvement in both O2 and CO2 barrier performance.
Oxypolypropylene as a Compatibiliser in Polypropylene-Nanocomposite Films
C.M. Small, G.M. Mc Nally, G.S. Garrett, A.H. Clarke, C-Y. Lew, May 2006
Nanocomposite films were prepared from polypropylene-organosilicate compounds, incorporating both oxypolypropylene (OxyPP) and a range of PP grafted maleic anhydride compatibilisers. X-ray diffraction suggested enhanced organosilicate exfoliation and dispersion, attributed to improved enthalpic interaction with the OxyPP compared with neat PP/organosilicate structures.
Performance of Mono-Layer Films Manufactured from EVOH/PP Compounds
C.M. Small, I.F.M. Major, G.M. Mc Nally, G.S. Garrett, A.H. Clarke, May 2006
Blown films were extruded from EVOH/PP compounds manufactured on a single screw extruder with a static diffuser. Oxypolypropylene and maleated PP oligomer were evaluated as compatibilisers. Results indicated improved gas barrier versus non-compounded blends and virgin PP films.


This item is only available to members

Click here to log in

If you are not currently a member,
you can click here to fill out a member application.

We're sorry, but your current web site security status does not grant you access to the resource you are attempting to view.




spe2018logov4.png
  Welcome Page

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net