SPE Library

The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 

Search SPE Library
Keyword/Author:
After Date: (mm/dd/yy)  
 
Sort By:   Date Added  ▼  |  Publication Date  ▼  |  Title  ▼  |  Author  ▼
= Members Only
Conference Proceedings
Prediction of Modulus by Considering Distribution of Cell Shape
Kazumi YAMAGUCHI, Akihiko GOTO, Umaru S. Ishiaku, Hiroyuki HAMADA, May 2006
The distribution of the cell shape in the polyurethane foam was measured by using the image processing method. In addition, the cell shape was simply modeled. The analysis limited within the range of elasticity was done by using this model. As a result, the prediction of the mechanical properties was tried by applying the rule of mixture to the foam. The validity was examined.
Morphology in WPC during Extrusion Foaming with N2
G. Guo, G.M. Rizvi, Y.H. Lee, C.B. Park, May 2006
Incorporating a fine-celled structure in wood-fiber/plastic composites (WPC) foam is important for achieving improved ductility and impact strength. This paper investigates the effects of processing and materials parameters on the morphological changes of WPC during extrusion foaming with N2.
Real-Time Diagnosis for Micro Powder Injection Molding Using Ultrasound
C.-C. Cheng, Y. Ono, B.D. Whiteside, E.C. Brown, C.-K. Jen, P.D. Coates, May 2006
Real-time diagnostics of ceramic powder injection molding with a micromolding machine was performed using ultrasound. Miniature ultrasonic sensors were integrated onto the mold insert. Melt front, solidification and part detachment of the feedstock inside the moldcavity were observed. The assistance of ultrasonic velocity in feedstock inside the mold cavity, the ultrasonic contact time during which the part and mold are in contact and holding pressure may minimize part dimension variation.
Rheology and Thermoforming of Rigid Medical Packaging Materials
A. Costa, G. Zeller, May 2006
Rheological properties were measured on two materials to evaluate their behavior in the thermoforming process. An impact-modified acrylic-based terpolymer compound displayed higher extensional viscosity and melt strength measurements versus a copolyester. The findings in this study showed that lower extensional viscosity and melt strength led to higher molded-in-stress and thinner walls of thermoformed parts.
Mechanical Testing and Characterization of Biopolymers
Stephen P. McCarthy, May 2006
Biopolymers are generally defined as polymers that are found in nature, derived from nature, or utilized as medical implants. Polymeric biomaterials which are utilized as medical implants are typically characterized for end-use performance as well as processability. While lactic acid is found in the human body, polylactic acid is derived from natural resources and utilized as medical implants. This paper will utilize poly(lactic acid) as an example of a biopolymer where the morphological and isomeric structure has an influence on end-use properties such as mechanical properties, biodegradability, and biocompatibility.
Influence of Phase Segregation on the Physical Properties of Polyethylene Blends
Rajendra K. Krishnaswamy, May 2006
Phase segregation in melt-extruded blends of polyethylenes that differ considerably in molecular weight was found to exert diverse degrees of influence on various measured physical properties. The instantaneous tensile deformation properties were insensitive to phase segregation while the high-strain tensile deformation behavior is strongly and adversely influenced by phase segregation. Phase segregation of select blend components can favor the plane stress fracture resistance.
Polymer Composites of Modified Carbon Nanofibers Prepared by Chaotic Mixing
Guillermo A. Jimenez, Sadhan C. Jana, May 2006
Surface-modified carbon nanofibers were used using a chaotic mixer to prepare composites of poly (methyl methacrylate). The quality of dispersion, and electrical and thermo-mechanical properties were determined and compared with similar composites containing non-treated carbon nanofibers. Composites of treated nanofibers showed improved dispersion, and better mechanical properties even at high temperatures, but their electrical conductivity was lower than composites of nanofibers without surface treatment.
Increasing the Feasible Bonding Strength in Micro Assembly Injection Molding Using Surface Modifications
Walter Michaeli, Dirk Opfermann, May 2006
Polymers offer a wide range of properties that can be modified according to the needs. An offline joining process can be avoided by overmolding the components to create a hybrid micro system. New research at IKV shows a significant increase in the feasible bonding strength in micro assembly injection molding by using plasma treatment for the inlay parts.
Bead and Fiber Morphologies during Electrospinning of Polystyrene
Goki Eda, Satya Shivkumar, May 2006
The cumulative effects of polymer molecular weight and concentration on the structure of electrospun fibers and beads were investigated. A significant change in fiber diameter and shape was observed as the molecular weight was varied keeping Berry number, [?]C, constant. Below the entanglement concentration, various types of beads including wrinkled beads, cups, dishes and toroids were produced.
Polystyrene/Clay Nanocomposites by Melt Intercalation
Musa R. Kamal, Jorge Uribe Calderon, May 2006
Polystyrene nanocomposites were obtained via melt compounding, using montmorillonite modified with various surfactants. The interlayer distance, thermal stability and surface tension of the resulting organoclays were determined. Moreover, the resulting PS nanocomposites were evaluated using X-ray diffraction and thermogravimetric analysis (TGA). The mechanical and barrier properties were also determined. The results show significant differences in thermal stability, and mechanical and barrier properties of the nanocomposites depending on the composition and interfacial properties of the surfactant.
Photoviscoelastic Behavior and Residual Thermal Birefringence in Polycarbonates
T.H. Lin, A.I. Isayev, May 2006
The stress-optical coefficient function of two optical grade polycarbonates (PC) has been determined by simultaneous measurements of the relaxation modulus and strain-optical coefficient function. Based on these measurements, linear viscoelastic and photoviscoelastic constitutive equations were applied to evaluate residual thermal birefringence in quenched PC plates. Numerical results have been compared with the measurements.
Influence of Compounding Conditions on Mechanical Properties of Recycled Poly(Ethylene Terephthalate)
Noriaki Kunimune, Hiroyuki Inoya, Shigeyuki Nagata, Kazushi Yamada, Masaya Kotaki, Hiroyuki Hamada, May 2006
We have prepared several types of recycled materials from waste poly-(ethylene terephthalate) (PET) through different compounding conditions. As a result, modified recycled- PET (R-PET) with strength similar to virgin PET has been successfully developed. In this paper, structure and mechanical properties of the modified R-PET immersed in hot water were investigated on the basis of tensile test, impact test, Gel Permeation Chromatography (GPC), and Differential Scanning Calorimetry (DSC).
Characterizing Fiber Diameter and Deformation Using Diffraction Techniques
Peter J. Walsh, Alan J. Lesser, May 2006
A common experimental obstacle encountered during mechanical testing of fibers is that the cross-section area and transverse strain are difficult to assess directly. A laser diffraction technique has been found adequate to measure fiber diameters within the range of 10-100 um during tensile testing with a precision of ±10%. Fiber transverse strain is evaluated by SAXD and used to determine Poisson’s ratio and study deformation at different length scales of fibers with hierarchical structure.
Effect of Plug Design on Thermoformed Polypropylene Parts
Supravan Khongkruaphan, Joey Mead, Stephen Orroth, Noel Tessier, Tom Murray, May 2006
In this study the influence of plug design, namely plug volume, plug taper, plug depth and plug temperature on the wall thickness distribution, weight and compression strength in thermoformed polypropylene cups was investigated. It was observed that the plug volume was the most importance factor for part shape. Plug depth had a significant effect on the bottom and corner thicknesses and part weight. Plug temperature and plug taper had a significant effect only on the compression strength.
Electrospun PVA Fibers as Precursor to Synthesize Hydroxyapatite
Xiaoshu Dai, Satya Shivkumar, May 2006
PVA (Polyvinyl alcohol) with various molecular weights (Mw) were electrospun with a Calcium Phosphate based sol. Fibers on the order of 2 ?m with uniformly distributed sol particles were obtained. Electrospinning process may be facilitated with high molecular weight polymers. The distribution of sol in the electrospun structure may depend on polymer/sol ratio. XRD results indicate that the fibers after calcination consisted predominantly of hydroxyapatite.
Impact Properties of Recycled PET Prepared by Reactive Compounding
Noriaki Kunimune, Hiroyuki Inoya, Shigeyuki Nagata, Kazushi Yamada, Masaya Kotaki, Hiroyuki Hamada, May 2006
We’ve aimed to develop high impact strength materials from waste PET. Recycled PET with impact strength as high as polycarbonate (PC) was successfully developed by reactive compounding with polymer with epoxy group. Structure development of the recycled PET in the reactive compounding was discussed on the basis of fracture surface observation by scanning electron microscope (SEM), Dynamic Mechanical Analyzer (DMA) analysis, Gel Permeation Chromatography (GPC), and Differential Scanning Calorimetry (DSC).
Preparation of Polystyrene/Carbon Nanofiber Conductive Composite Film
Chi-Wei Tien, Luyi Sun, Israel Serna, Hung-Jue Sue, May 2006
An efficient and inexpensive approach was developed to prepare conductive polystyrene (PS) films via a simple solution dispersion method. Carbon nanofiber (CNF), which has a similar structure as multiwall carbon nanotubes and a high performance/price ratio, was used as the filler in this research to achieve conductivity in polystyrene films. A good dispersion was achieved within the polystyrene solution system even without using any surfactants. A low percolation threshold at about 0.75wt% has been achieved.
Nano-Clay Tethered Shape Memory Polyurethane Nanocomposites
Feina Cao, Sadhan C. Jana, May 2006
The magnitude of recovery force in shape memory polymers is usually low and must be augmented. In this work, a network is introduced in shape memory thermoplastic polyurethane (PU) by the addition of reactive nanoclay in an effort to improve the recovery force. In this case, nanoclay particles were allowed to tether to PU chains by chemical bonding. This report covers preliminary results on thermal, mechanical, and shape memory properties of clay-PU nanocomposites.
Multivariate Analysis (MVA) for Quality Detection in Injection Molding Systems in the Medical Device Community
Chris Ambrozic, Lee Hutson, May 2006
We describe a new method of point-of-origin quality detection for injection molding systems. The method encompasses data acquisition, Multivariate modeling, reject control and data reporting, provides in-line quality detection of injection molded parts, and real-time reports on fault contributors. We discuss real-world production applications in which MVA is applied using real-time molding parameters to predict quality, with a goal of Parametric Release.
Electrorheological Properties of Carbon Black Filled PDMS
Michael Kaufman, Marianna Kontopoulou, Aristides Docoslis, May 2006
The electrical conductivity and rheological properties under steady shear flow of carbon black-filled PDMS are measured as a function of filler loading, matrix viscosity and shear rate, upon application of an AC electric field. The effects of electric field are most notable at low filler loadings and low matrix viscosities.


This item is only available to members

Click here to log in

If you are not currently a member,
you can click here to fill out a member application.

We're sorry, but your current web site security status does not grant you access to the resource you are attempting to view.




spe2018logov4.png
  Welcome Page

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net